公倍数和公因数教学反思范文
公因数和公倍数的学习是五下教材的两个重要概念,新教材对这部分内容作了化解难点,个别击破的办法,如何教学好这节内容,我在这次的新教材教学实践中作了如下尝试。
1、 有效建立概念之间的结构链,形成条理化。 因数——公因数——最大公因数
倍数——公倍数——最大公倍数
这一单元主要是让学生在操作与交流活动中认识公倍数与最小公倍数,公因数与最大公因数,并激发学生的学习兴趣,培养学生的探究能力,因此在教学中我认为应特别注重概念间的系列反应,如倍数和因数是前面所学内容,新内容要在此基础上生根,必须复习旧知,联系生活,学习新知,围绕“公”,理解公倍数与公因数的概念,最小公倍数则通过实际生活中如第25页公交发车问题或参加游泳问题,来引发就是求最小公倍数来解决问题,最大公因数则通过长18厘米,宽12厘米的长方形来分最大的小正方形得到,教学中,我们必须注重学生对概念间的关系理解,从而形成条理化。
2、 有效设计复习引入的问题串,引发思维性。
由6和8的因数有哪些?引起学生回忆怎么求一个数的因数?(一对一对地想、由小到大地有序地想)然后发现它们有1和2是相同的,即为公因数,用集合图(韦恩图)可以形象地描画出来,那么公因数有什么作用呢?
引出改编后的例3,要把长18厘米、宽12厘米的长方形剪成若干个相等的小正方形且没有剩余,有多少种剪法?最大的正方形是哪一种?
学生探究后发现,正方形的边长为1厘米、2厘米、3厘米、6厘米,反思:为什么?边长与12厘米和18厘米有什么关系?
从而想到18的因数有哪些,12的因数有哪些,18和12的公因数即为剪下的正方形的边长,而6则是比较特别的一个最大的数,即为最大公因数,到这里实际解决了例4。
再次提问:因数是怎么求的?公因数是什么意思?最大公因数是什么意思?怎么求两个数的最大公因数。回到教材,自学教材,思考问题。
3、 有效使用教材与教辅资料,提高达成性。
什么时候阅读教材,例题等主体部分看不看?练习部分怎么用?都值得我们每节课去揣摩和研究。
在公因数的教学中,我既不完全脱离教材,又适当对教材进行了重组,改变了教材在课堂上的展示方式,整合了两道例题与习题10的展示与使用,让学生在“润物无声”的境界中,既学习了例题,又学习了新知,还不完全相同。为不让学生陌生,共同探讨之后又让学生回到教材,仔细阅读教材,寻找教材重点、难点,作好标记,可以当堂又经过了初步的复习。
书后的练一练以及练习五1-5题,由浅入深,重点训练学生寻找最大公因数的方法,无需改编,原题照用,可以直接在教材上作练习,当堂巩固所学新知,结合练习适当进行拓宽与技能的强化,可以直接实现当堂清。
本文标签:
[!--temp.ykpl--]