不等式的知识点总结
用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。下面,小编为大家分享不等式的知识点总结,希望对大家有所帮助!
1.用符号
〉,=,〈号连接的式子叫不等式。
2.性质
①如果x>y,那么yy;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
⑥如果x>y>0,m>n>0,那么xm>yn;
⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂。或者说,不等式的基本性质有:
①对称性;
②传递性;
③加法单调性,即同向不等式可加性;
④乘法单调性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可开方;
⑧倒数法则。
3.分类
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.不等式考点
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
注:不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)
不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)
不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)
本文标签:
[!--temp.ykpl--]