《完全平方和(差)公式》教学反思

文章 2019-07-09 19:24:11 1个回答   ()人看过

完全平方和(差)公式是某些特殊形式的多项式相乘,只有掌握完全平方和(差)公式的一些本质地结构特点,才能正确地让公式更好地帮助我们进行简单计算。

要学好这部分,首先要注意掌握:

1、公式本身:(a+b)2=a2+2ab+b2

文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积2倍。

2、公式的结构特点:等号左边是一个二项式的平方,等号右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中那两项乘积的2倍。或等号右边记作:首平方,尾平方,2倍之积中间放。

3、公式中字母的广泛意义:既可以代表任意的数(正数、负数),又可以代表任意代数式。注意代表代数式时,要有“整体思想”的观念。

其次要注意易错点:

1、易错写:(a+b)2=a2+b2

许多学生往往认为(a+b)2=a2+b2,甚至认为(a+b)3=a3+b3,(a+b)4=a4+b4,等等。为了说明这个问题,我首先利用分地的故事引入,第一个农夫分得a2+b2,第二个分得(a+b)2,然后让同学们对比2个代数式,通过各种方法说明这两者是不同的,比如计算法,代数字法,几何作图法(联系公式的几何意义),因而加深理解完全平方公式,并借此进行强化训练。虽然还有极个别学生出现2项的情况,但绝大部分明白了2倍之积中间放的意义。

2、两个公式中的符号易混:课堂上进行了教学的改进,把2个公式(a+b)2与(a-b)2并作一个公式来处理。为了避免符号上出现混乱,把2个公式的符号特点进行观察,得出同号得正,异号得负的结论。由此应对两项式的平方的符号问题,也省去了一些变号的烦恼。

3、两公式灵活运用

在一些实际问题中,有些题目不能直接运用公式,需要一步转化才可以。如计算:

(1)(y-x)(x-y)(2)(x+y)(-x-y)

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: