2018寒假数学学习计划
寒假即将到来,你是否已经为自己做好了规划呢?下面,小编为大家分享寒假数学学习计划,希望对大家有所帮助!
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。
第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3.了解高阶导数的概念,会求简单函数的高阶导数。
本阶段主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。
3.掌握用洛必达法则求未定式极限的方法。
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
本阶段主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
第四阶段复习计划
复习高数书上册第四章 第1-3节。需达到以下目标:
1.理解原函数的概念,理解不定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。
本阶段主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
第五阶段复习计划
复习高数书上册第五章第1-3节。达到以下目标:
1.理解定积分的几何意义。
2.掌握定积分的性质及定积分中值定理。
3.掌握定积分换元积分法与定积分广义换元法。
本阶段的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
2.掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本阶段主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
本文标签:
[!--temp.ykpl--]