数学手抄报图片六年级
导语:六年级数学手抄报图片有哪些呢?数学对于我们的生活,对于人类的发展,对于国家的建设,都是至关重要的。欢迎阅读小编整理的六年级数学手抄报图片,希望能够帮到大家。
数学名人故事:高斯童年趣事
那年,小高斯上小学了。教师名字叫布特纳,是当地小有名气的“数学家”。这位来自城市的青年教师,总认为乡下的孩子都是笨蛋,自己的才华无法施展。三年级的一次数学课上,布特纳对孩子们又发了一通脾气,然后,在黑板上写下了一个长长的算式:81297+81495+81693+……+100701+100899=?
“哇!这是多少个数相加呀?怎么算呀?”学生们害怕极了,越是紧张就越是想不出怎么计算。
布特纳很得意。他知道,像这样后一个数都比前一个数大198的100个数相加,这些调皮的学生即使整个上午都乖乖地计算,也不会算出结果。
不料,不一会儿,小高斯却拿着写有答案的小石板过来了,说:“老师,我算完了。”布特纳连头都没抬,生气地说:“去去,不要胡闹。谁想胡乱写一个数交差,可得小心!”说完,挥动了一下他那铁锤似的拳头。
可是小高斯却坚持不走,说:“老师,我没有胡闹。”并把小石板轻轻地放在讲台上。布特纳看了一眼,惊讶得说不出话来,没想到,这个10岁的孩子居然这么快就算出了正确的答案。
原来,小高斯不是像其他孩子那样一个数一个数地加,而是细心地观察,动脑筋,找规律。他发现一头一尾两个数依次相加,每次加得的和都是182196,求50个182196的和可以用乘法很快算出。
小高斯的难以置信的数学天赋,使布特纳既佩服,又内疚。从此,他再也不轻视穷人的孩子了。他给小高斯买来了许多数学书,并让他的年轻的助手巴蒂尔帮助小高斯学数学。
六年级数学:质数知识点全解
质数、质因数和互质数这三个术语的概念极易混淆,因为它们都有“质”和“数”两个字。正确地区分这几个概念,对掌握数的整除性这部分基础知识,有着极其重要的意义。
(1)质数:一个自然数,如果只有1和它本身两个约数,这个数叫做质数(也称素数)。
例如:
1的约数有:1;
2的约数有:1,2;
3的约数有:1,3;
4的约数有:1,2,4;
6的约数有:1,2,3,6;
7的约数有:1,7;
12的约数有:1,2,3,4,6,12;
……
从上面各数的约数个数中可以看到:一个自然数的约数个数有三种情况:
①只有一个约数的,如1。因此,1不是质数,也不是合数。
②只有两个约数的(1和它本身),如2,3,7……
③有两个以上约数的,如4,6,12……
属于第②种情况的,叫做质数。属于第③种情况的,即:除了1和本身以外,还有别的约数,这样的数叫做合数。
(2)质因数:一般地说,一个数的因数是质数,就叫做这个数的质因数。
例如:18=2×3×3
这里的2、3、3都是18的因数,而2和3本身又都是质数,于是我们就把2、3、3叫做18的质因数。这里需要注意的是:18也可以写成3与6的乘积,即:18=3×6,无疑3和6都是18的因数,但3本身是质数,可以称做18的质因数,而6是合数,则不能称做18的质因数。
(3)互质数:两个或几个自然数,当它们的最大公约数是1的时候,这两个或几个数,就叫做互质数(也叫互素数)。
例如:5和7,4和11,8和9,7、11和15,12、20和35……。
上述这几组数,它们的最大公约数都是1,因此,它们都是互质数。在以上两个互质数中,如7、11和15这三个数,7和11是互质数,11和15是互质数,7和15也是互质数。这类情况,我们就叫做这三个数“两两互质”。但12、20和35这组数中,虽然它们也是互质数,但不是两两互质,因为12和35是互质数,至于12和20、20和35都不是互质数。
需要注意的是:不管两个数互质或者两个的数以上互质,这些数本身却不一定是质数,如5和7是互质数,它们本身都是质数;4和11是互质数,其中4并不是质数;8和9是互质数,但8和9本身都不是质数。
总之,质数是指一个数。譬如说:“2是质数,11是质数”等等。质因数虽然也是指一个数,但是它是针对另一个数而说的。譬如说:“5是35的质因数。”如果离开35,孤立地说:“5是质因数。”则是不妥当的。因此,质因数具有双重身份:第一必须是个质数;第二必须是另一个数的因数。
互质数同质数、质因数都不同,它不是指一个数,而是指除了1以外,再没有其他公约数的两个或两个以上的数。
由此可见:掌握质数、质因数和互质数这几个术语的概念,其中质数是基础,这三者之间既有联系,又有区别,要透彻理解和正确区分,才能防止混淆。
本文标签:
[!--temp.ykpl--]