滑坡体变形监测优化设计的论文
论文摘要:以一个复杂大型滑坡作为研究对象,通过对该滑坡形成的地质环境、影响滑坡的敏感因素、破坏方式及其稳定性验算的分析研究和对设计过程的叙述,说明了滑坡治理过程中动态设计的重要性和必要性。
论文关键词:滑坡治理方案优化动态设计
1工程概况
该滑坡位于一大型古滑坡群,滑坡体沿线路宽约300m,南北长约400m。该段线路原设计为缓和曲线,总体走向为SW60。,路基从滑坡的中前部以路堑形式通过,其路基中心最大挖方深度大于10m。在边坡的开挖过程中,先是滑坡体西部局部坍塌变形,经2005年4月29日大雨,在滑坡体左侧距线路中心线130m处的二级平台以下,发生地面开裂,裂缝宽40CITI,在K28+120~K28+250段原卸载平台上出现了多条垂直线路的纵向裂缝,线路施工被迫停工。经过8月份的雨季后,滑坡体位移迅速加大,原裂缝进一步加深、加宽,最宽处达45m左右,深达8m,滑坡体整体下滑。中前部K28+222~K28+258段左右坍塌变形严重,挤压变形厉害,浅层滑坡剪出口局部已经形成,滑动擦痕明显。
2工程地质特征
该滑坡的后缘陡峭,滑坡中间部位有一级滑坡阶地和基岩姥坎,可分为前、后两级滑坡体。从滑坡侧界和滑坡前缘地形地貌等特征综合确定主滑动方向为NW26。左右。滑坡区影响线路里程为K28+018~K28+300段,滑坡体纵向长度约350m,平行路线最大宽度达282m。
根据滑坡勘察资料分析,该古滑坡分为浅层、中层、深层(潜在滑坡)三层滑动。通过野外调查和地质钻探查明,滑体物质主要为滑坡堆积层(块碎石土、角砾和粘土),滑体前部物质比较杂乱,块碎石、孤石含量较高,块石直径多为1m~3m。滑体中、后部块碎石、角砾含量较低,块石直径多为20cm-30cm,粘土含量增多,滑床主要由微风化凝灰质粉砂岩构成。该滑坡浅、中层滑带主要依附于粘土层与表层块碎石层接触带形成,粘土层中不同深度处有滑动擦痕及光滑镜面存在,均为滑坡曾发生过滑动的佐证。
3滑坡形成的原因及机理分析
根据滑坡工程勘察资料和现场调查情况分析,该滑坡发生的主要原因有以下几点:
1)K28+018K28+300段线路以路堑形式从滑坡的前缘部位通过,最大挖方深度大于10m,在古滑坡体的前缘部位形成了危险临空面,并揭露了老滑坡的滑动面,直接在边坡上暴露形成新的剪出口,导致老滑坡的复活;2)滑坡区后缘弧型延展的基岩陡壁和滑坡体构成庞大的汇水区域,地表水沿裂缝和基岩裂隙下渗至粘土层滑动带,大大降低了滑坡体的抗剪能力;3)古滑坡体物质杂乱,物质结构松散、空隙较大,同时由于取土破坏了地表结恂,急剧降落的暴雨容易下渗,坡体内的水不能及时排除,导致滑带土处于完全饱水状态,抗剪强度骤然降低。各种因素综合作用导致了在老滑坡复活的同时,形成了更深层的滑动面。
4稳定性计算
4、1滑动面C,值的确定(见表1)
4.2滑坡推力计算
滑坡推力按GB50021—2001岩土工程勘察规范4.2.6-1传递系数法进行计算,计算结果见表2。
滑坡体后部取在安全系数K=1.15时计算的滑坡推力F=1245kN/m为设计推力,桩前抗力取313kN/m;前部滑体取在安全系数K=1.25时计算的滑坡推力F:1271kN/m为设计推力,桩前抗力取369kN/m,以此组数据进行滑坡的治理工程设计。
4.3滑坡体稳定性计算
由计算结果可知,该滑坡体后部的稳定性系数在目前状态下K=1.05;前部滑体在工程状态下(K:0.92,1.02,1.04),滑体处于极限平衡状态。该部滑体的前部滑体、后部滑体无论在自然状态下还是工程状态下都不满足《公路路基设计规范》对高速公路的滑坡稳定系数K的取值范围为1.20~1.30的要求,必须进行治理。
5治理设计过程和方案优化
5.1滑坡治理设计过程
该滑坡曾在2004年12月进行了勘察,并根据勘察结果完成了施工图设计。经过2005年8月的强降雨后,滑坡体开始发生明显位移,坡体、坡面破坏严重,尤其是滑坡体在K28+120-K28十250段原卸载平台上出现了多条垂直线路的纵向裂缝,坡面沉降量多达8m。原先的施工图设计(仅做抗滑桩和坡面截水沟)已不能满足现在滑坡治理的要求,有必要对此滑坡重新进行分析评价和优化设计。
治理工程第二次施工图设计于2005年11月底完成,当设计人员现场确认时,发现雨后的滑坡体西部又出现新的滑塌体,且在滑塌体下部有大量的地下水渗出。经现场重新勘察确定,由于粘土层的隔水作用,该滑坡的浅层滑体完全处于饱水状态,从而增大了下滑力。根据这一新的发现设计人员立刻对原来的设计进行了修改,在挖方边坡上设置仰斜排水孔,并在坡体上增加了两条用以排除地下水的渗水盲沟,使设计更加完善。
5.2滑坡治理方案比选
综合分析滑坡工程地质条件及工程现状,提出以下两个治理工程方案:
方案一:在保持原设计线路的线型、路基高程的前提下,采取上、下两级支挡,中间进行刷方减载的方案,进行滑坡治理。具体方案是:1)在滑坡中后部离滑塌区边界外布置一排普通钢筋混凝土抗滑桩,即上排抗滑桩;2)滑体的中下部位布置一排抗滑桩,即下排抗滑桩;3)截、排地表水、地下水。
方案二:调整原设计线路,将原设计路基高程提高3m,以减少滑坡前缘的挖方量,增加阻滑段,提高滑坡体的稳定性。由于滑坡体易滑动,且滑动面位于路基高程以下,路基提高3m,还需对滑坡进行治理。拟采用的治理方案是:1)在滑坡中后部离滑塌区边界外布置一排普通钢筋混凝土抗滑桩,即上排抗滑桩;2)滑体的中下部位布置一排抗滑桩,即下排抗滑桩;3)对滑动坡体进行坡面整修;4)截、排地表水、地下水。
综合分析各治理方案及工程现状,经比较,推荐方案一为滑坡治理工程设计方案。
6坡体变形监测结果
在滑坡上设置水平变形观测网和深部位移监测(观测孔),对滑坡体进行实时动态监测,以便及时掌握滑坡的变形趋势和为评价滑坡治理的效果提供依据。早期的变形结果显示,滑体西部的位移在降雨时有明显变化,经分析为滑坡的浅层滑体蠕动,根据这一现象,对滑坡西部增加了两道树枝状简易渗水盲沟。竣工后的监测结果显示,滑坡体稳定无异常。
7结语
根据经验,通过古滑坡体的路段,均使古滑坡产生了不同规模的复活,对公路建设造成了一定的影响,因而对路线所经地区,必须坚持工程地质选线原则,对大型地质灾害应尽量绕避,如果路线必须穿越时,应根据具体灾害特征,选择对灾害影响最小的位置通过。滑坡防治工程应建立在尽可能多的地质资料基础上,充分了解滑坡发生的水文地质和工程地质条件,分析论证其发生机理,进行经济合理、安全可靠的防治工程设计。水对滑坡的发生有极为重要的作用,通常有“无水不滑”的说法,有效的排水措施对滑坡的治理往往会有事半功倍的效果。鉴于滑坡体本身的复杂性,必须采取动态设计的原则,即随施工开挖过程中地质信息反馈,及时修改设计。在施工过程中及施工完成后一定阶段内,应对滑坡体进行变形监测,以便及时掌握滑坡的变形情况,根据变形结果优化设计,同时可以检验滑坡的治理效果。
本文标签:
[!--temp.ykpl--]