设计小型液冷系统论文
引 言
电子设备元器件一直是朝着提高集成度、减小元器件尺寸及增加时钟频率的趋势发展。高集成度、微小的元器件尺寸及大时钟频率带来的是元器件功率和热流密度急剧增加而产生的过高温升。实验证明,电子器件的可靠性与温度成反比。在传统热设计中,散热方式以传导、自然冷却、强迫风冷为主,随着元器件热流密度的不断增大,传统散热方式已无法满足散热要求,液冷技术比空气冷却效率高出 100~2000 倍,液冷散热技术越来越多地应用于机载电子设备。在航空应用环境,对于机载电子设备的尺寸和重量有严格要求,因此液冷系统的小型化研究十分必要。
1 液冷技术及液冷系统原理
液冷技术是指冷却介质为液体的冷却技术。其原理就是利用冷却液的流动带走元器件产生的热量从而降低发热元器件的温度。液冷系统主要由液冷散热器、循环管路、泵、储液箱、二次换热器 5 部分组成。其工作原理如图1 所示,冷却介质在泵的作用下从储液箱泵出流入液冷散热器内,将电子元器件产生的热量带走,再经过二次换热器将热量散发到空气热沉中,冷却后的液体再次流回储液箱,如此循环往复来达到控制元器件温度的目的。
2 小型液冷系统的设计
在标准 1ATR 机箱内设计液冷系统并实现液冷系统的小型化。小型液冷系统自带冷却液驱动、存储、二次换热系统,仅需要飞机提供冷却空气,即可实现高热流密度元器 件 的温 度 控制 ,可 以有效解 决高热流 密度元器 件的散热 问题。
小型液冷系 统主要由驱动模块、液冷散热器、空气/液体二次换热器 3部分组成。驱动模块为小型液冷系统提供冷却液的驱动、存储、冷却液流量控制;液冷散热器对高功耗元器件进行散热,元器件产生的热量传递给液冷散热器内的冷却液,冷却液将热量带出,达到控制元器件温度的目的;空气/液体二次换热器将冷却液吸收的元器件热量散发到空气热沉中,使得冷却液温度降低,达到循环利用的目的。
小型液冷系统的设计方案见图 2。驱动模块插入机箱的插槽内,空气/液体换热器嵌入在机箱侧壁上。储液箱中的低温冷却液在驱动系统中微泵的作用下流入液冷散热器中与元器件进行热交换,热交换后的高温冷却液流入机箱侧壁与冷却空气进行热交换,将冷却液热量散失到环境中后重新回到储液箱中,如此循环。
2.1 驱动模块的小型化设计
驱动模块小型化设计主要是将微泵、储液箱、电源及控制电路集成在一个模块内,以实现驱动系统的集成化、模块化、小型化,必须从组成系统的各个部件入手。
1)泵的小型化。受驱动模块内部安装空间的限制,小型液冷循环系统采用微型泵来满足小型化要求。选择泵的型号前应精确计算系统流动阻力和冷却液所需 的 流 量 ,根据系统流阻曲线与泵的工作曲线选择合适的微型泵,应尽量使所选泵在其高效工作区范围内即额定工况点附近运行。经过系统流阻及冷却液流量精确计算后,本系统选择微型齿轮泵,微型齿轮泵具有自吸能力,通过电机控制流量,流量精度高,体积小,能够满足系统对压力、流量及小型化的要求。
2)储液箱的小型化。根据传热理论精确计算系统所需的冷却介质流量,储液箱中冷却液出口应设计在储液箱底部低点,内部应设计斜面以避免死水区的形成,以便有效利用冷却液,实现储液箱小型化要求。
3)电源及控制电路小型化。根据微型齿轮泵供电要求选择微型电源模块,根据驱动模块内部空间设计微型控制电路,控制电源模块输出 0~5 V 的电压,调节齿轮泵电机转速,实现对流量的精确控制。
2.2 液冷散热器的小型化设计
液冷散热器小型化设计关键是在有限的空间内实现换热效率的最大化。通常液冷通道的设计对实现高效换热至关重要。
在液冷框体内设计流道,通过冷却液在液冷通道内的流动将元器件热量带走。液冷通道设计为蛇形并联管路,蛇形通道增加热交换时间及面积,并联管可有效降低流阻,同时避免堵塞,提高可靠性。
通过对液冷散热器进行热性能仿真,优化液冷散热器内部流道结构形式,增加冷却液流动通路尺度,增加有效换热面积,降低热源温度,有效提高液冷散热器散热性育。
3结语
机载电子设备的性能要求不断提高,功耗不断增大,同时又对“小、低、轻”的要求越来越迫切。本文将液冷系统设计在一个标准IATR机箱内,对液冷系统的各组成部分的小型化设计进行了探讨,提出了电子设备液冷系统二次换热器嵌入式设计方法,将电子设备机箱侧壁设计为液冷系统二次换热器,极大地缩小了液冷系统的体积,实现了液冷系统的小型化。小型液冷系统自带冷却液驱动、存储、二次换热系统,仅需要吃机提供冷却空气即可实现对高热流密度元器件的温度控制。通过实验,测试了该系统的高效散热性能,与传统风冷机箱相比,元器件温度大幅下降。该小型液冷系统具有结构紧凑、维护方便、换热效率高等优点,为后续电子设备液冷系统高效散热及小型化设计提供参考。
本文标签:
[!--temp.ykpl--]