六年级下册圆柱的表面积优秀教案

文章 2019-07-23 00:12:27 1个回答   ()人看过

篇一:小学数学六年级下册《圆柱的表面积》教学设计

教学目标

1:理解圆柱体侧面积和表面积的含义。

2:通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

3:体验成功与失败的收获,体会合作的愉悦

教学重点:动手操作展开圆柱的侧面积

教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

教具准备: 圆柱表面展开图

学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。 教学过程

一、创设情境,引起兴趣。

出示:牛奶盒,纸箱,可比克。

提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

(2)制作这些包装盒,至少需要多大面积的材料?(指名说) 师:谁能说说上一节课你学过圆柱体的哪些知识?

生:...........

师:请同学们拿出你自制的圆柱体模型,动手摸一摸

生:动手摸圆柱体

师:谁能说一说你摸到的是哪些部分?

生:..........

师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

二、探索交流,解决问题。

导语:圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(指名说)

提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐 有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)

(展开的形状可能是长方形、平行四边形、正方形等)

1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的.方式验证刚才的猜想。

2.操作活动:(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

3.小组交流能用已有的知识计算它的面积吗?

4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

板书:

长方形的面积=长 × 宽

↓ ↓↓

圆柱的侧面积 =底面周长× 高

所以,圆柱的侧面积=底面周长×高

S 侧= C×h

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 师:如果圆柱展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。

(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

练习

求圆柱的侧面积(只列式不计算)

1. 底面周长是1.6米,高是0.7米

2. 底面直径是2分米,高是45分米

3. 底面半径是3.2厘米,高是5分米

研究圆柱表面积

1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

2、动画:圆柱体表面展开过程

3、圆柱体的表面积怎样求呢?

得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2

4. 一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

三,巩固应用,内化提高

1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同? 多媒体出示:水管,水桶,糖盒

提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)

重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

四.回顾整理,反思提升

根据板书总结:本节课你收获了什么?老师希望同学们能够应用本节课所学知识制作出一个笔筒,送给你的好朋友,下课。

篇二:六年级数学下册《圆柱的表面积》教学设计

一、教学内容

P13-14页例3、例4,完成“做一做”及练习二的部分习题。

二、教学目标

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

三、教学重点:掌握圆柱侧面积和表面积的计算方法。

四、教学难点:运用所学的知识解决简单的实际问题。

五、教学准备:多媒体课件

六、教学预设 :

(一)、自学反馈

1、求下面各圆柱的侧面积

(1)底面周长2.5分米,高0.6分米

(2)底面直径8厘米,高12厘米

2、求下面各圆柱的表面积

(1)底面积是40平方厘米,侧面积是25平方厘米

(2)底面半径是2分米,高是5分米

(二)、关键点拨

1、圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: