初一数学有理数周记

文章 2019-06-30 19:45:29 1个回答   ()人看过

导语:有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。以下是小编为大家整理的初一数学有理数周记,欢迎大家阅读与借鉴!

初一数学有理数周记(1)

一只蜗牛不小心掉进了一口枯井。一只癞蛤蟆爬过来对蜗牛说:“这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”第二天,蜗牛就开始顺着井壁往上爬了。它不停的爬呀爬,到了傍晚终于爬了5米。蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。早上醒来,它心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。你能猜出来,蜗牛需要用几天时间才能爬上井台吗?由德智教育为您分析这道题:有理数的加法是有理数运算的开始,因此它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。

有理数的加法是有理数运算中非常重要的内容,它建立在小学算术运算的基础上。但是,它与小学的算术又有很大的区别,小学的加法运算不需要确定和的符号,运算单一,而有理数的加法,既要确定和的符号,又要计算和的绝对值。因此,有理数加法运算,在确定“和”的符号后,实质上是进行算术数的加法运算,思维过程就是如何把中学有理数的加法运算化归为小学算术的加减运算。

初一数学有理数周记(2)

古埃及人约于公元前17世纪初已使用分数,中国《九章算术》中也载有分数的各种运算。分数的使用是由于除法运算的需要。除法运算可以看作求解方程px=q(p0),如果p,q是整数,则方程不一定有整数解。为了使它恒有解,就必须把整数系扩大成为有理系。

关于有理数系的严格理论,可用如下方法建立。在Z(Z -{0})即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设 p1,p2 Z,q1,q2 Z - {0},如果p1q2=p2q1。则称(p1,q2)~(p2,q1)。Z(Z -{0})关于这个等价关系的等价类,称为有理数。(p,q)所在的有理数,记为 。一切有理数所成之集记为Q。令整数p对应一于,即(p,1)所在的等价类,就把整数集嵌入到有理数的集中。因此,有理数系可说是由整数系扩大后的数系。

有理数集合是一个数域。任何数域必然包含有理数域。即有理数集合是最小的数域。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。

依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。采用度量,有理数构成一个度量空间,这是上的第三个拓扑。幸运的是,所有三个拓扑一致并将有理数转化到一个拓扑域。有理数是非局部紧致空间的一个重要的实例。这个空间也是完全不连通的。有理数不构成完备的度量空间;实数是的完备集。

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: