生活中的数学故事分享
数学,它无处不在,它存在与生活中的每个角落。以下是生活中的数学故事分享,欢迎阅读。
生活中的数学故事分享1
当一个农村集市开张时,除了耕牛,所有的人都很兴奋。
今年,王大财主开办了一个叫“十五”的新游戏,他说:“村民们请留步,游戏的规则非常简单。我们只是把硬币放在这些1至9的数字上,谁先放都无所谓。你们放铜币,我放银币。谁先放了三个相加等于15的不同数字,谁就可得到案子上所有的钱。”
让我们看一个典型的玩法。一位妇人先把一枚铜币放在7上。由于7已被放上,其他人就不能再放了。对其它数字也是如此。王大财主把一枚银币放在8上。妇人下一次将把铜币放在2上,这样再放一次6,三个数字相加为15,就可以赢了。但是王大财主把一枚银币放在6上,破坏了她的打算。下一次他放在1上就可以赢了。妇人看出了这一威胁,先把一枚铜币放在1上破坏王大财主的赢势。王大财主将下一枚银币放在4上时暗自得意。妇人看到他下一次放在5上就会赢,还得再破坏他。于是她把铜币放在5上。但是王大财主放在3上也赢了。因为8+4+3=15。可怜的妇人输掉了4个硬币。
镇长先生觉得这个游戏很有意思。经过长时间的观察,他断定王大财主利用了一种秘密系统,使他不可能输,除非他想输。
解决此游戏的诀窍在于认识到这在数学上等同于划井游戏。为欣赏这一魔方的奇妙.让我们列出三个不同数字(除0外)相加等于l5的表,一共有8组:
1+5+9=15
1+6+8=15
2+4+9=15
2+5+8=15
2+6+7=15
3+4+8=15
3+5+7=15
4+5+6=15
现在仔细观察独特的3—3数字魔方:
2 9 4
7 5 3
6 1 8
注意共有8行:3组横行,3组纵行,2组斜行。每一行确定的3组数字之和均为15。因此,每一个赢的组合都是魔方中的一横、一纵或一斜行。现在很容易看出,每次游艺比赛实际上相当于划井游戏,谁先把自己的棋子占满一横、一纵或一斜行,谁就取胜。
在进行15游戏时,如果玩得正确就不会输。如果两个对手都玩得正确,则游戏结果就是平局。然而设盘者的对手由于不知道是在玩划井游戏,因而处于十分不利的地位。这就使设盘者很容易设置对己有利的骗局。
生活中的数学故事分享2
蜜蜂没有学过镶嵌理论,圆形织网蛛也没有学过对数螺线。但是正像自然界中的许多事物一样,昆虫和兽类的建筑常常可用数学方法进行分析。自然界用的是最有效的形式只需花费最少能量和材料的形式。不正是这一点把自然界和数学联系起来的吗?自然界掌握了求解极大极小问题、线性代数问题和求出含约束问题最优解的艺术。
把我们的注意力集中于蜜蜂,可以观察到许多数学概念。
正方形、正三角形和正六边形是仅有的三种自镶嵌正多边形。其中,对于给定面积来说,六边形的周长最小。这意味着蜜蜂在建筑蜂房中的六角柱巢室时,比起用以正方形或三角形为底的棱柱来镶嵌空间的情况,可以用较少的蜡和做较少的工作围出相同的空间。蜂房的壁由大约1/80英寸(英制长度单位,1英寸合2.54厘米。译者注)厚的巢室壁构成,但是能支持自身重量的30倍。这就是蜂房给人以沉重感觉的原因。大约14.5英寸8.8英寸的蜂房能储存5磅多的蜜,而建筑所需的蜡只有大约1.5盎司(英制重量单位,1盎司合28.3495克。译者注)。蜜蜂用三个斜棱柱截段构成六角柱,巢室壁交接处恰巧成120角。蜜蜂们同时在不同截段上工作,天衣无缝地筑成一个蜂房。蜂房是垂直向下建筑的,蜜蜂把它们的部分身体用作测量仪器。事实上,它们的头起着测锤的作用。
蜜蜂所拥有的另一迷人的工具是罗盘。蜜蜂的定向受到地球磁场的影响。它们能探测到地球磁场中只有灵敏磁强计才能辨别的微小涨落。这就是为什么一群蜜蜂在占据一个新的地点时可以在这新领域的不同部分同时开始建筑蜂房而并无任何蜜蜂领导着它们的原因。所有蜜蜂都按照与旧蜂房相同的方向为它们的新蜂房取向。
在下页图中,可见巢室排得很紧密,蜜蜂已经用半菱形十二面体将端处盖好。此外,蜜蜂所建室壁的斜度是13,这样可以防止蜂蜜在端顶被蜡帽封盖前流出。
通信联络是又一个令人感兴趣的领域。工蜂经过长途侦察回到蜂房时,以跳舞的形式发出一串代码,表明它们找到的食物源的方向。它们能传达食物的方向和距离。跳舞相对于太阳的定向提示食物的方向,跳舞的持续时间则指出距离。同样令人惊奇的是,蜜蜂知道两点之间的最短距离是一条直线。或许这是蜂线(beeline,即两点之间的直线。译者注)这一术语的可能来源。工蜂在花间随意来去而采集到大量花蜜后,它知道取最直接的路线回到蜂房。蜜蜂是通过它的遗传密码获得数学训练的。从数学的观点分析自然界的各个方面,是一件有趣的事情。对于蜜蜂生活的这一瞥也不例外。我们在这里发现了材料和工作的最优化、平面和空间的镶嵌图案、六边形、六角柱、菱形十二面体、几何定理、磁场、代码和惊人的工程技术。
生活中的数学故事分享3
这两个故事都发生在二战期间,并且都是盟军方面机智的统计学家,数学在二战期间充当了十分重要的角色,今天说的是统计。
第一个故事发生在英国,二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期地对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。
为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是求助于统计学家。统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家很肯定地说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。
第二个故事与德国坦克有关。我们知道德国的坦克战在二战前期占了很多便宜,直到后来,苏联的坦克才能和德国坦克一拼高下,坦克数量作为德军的主要作战力量的数据是盟军非常希望获得的情报,有很多盟军特工的任务就是窃取德军坦克总量情报。然而根据战后所获得的数据,真正可靠的情报不是来源于盟军特工,而是统计学家。
统计学家做了什么事情呢?这和德军制造坦克的惯例有关,德军坦克在出厂之后按生产的先后顺序编号,1,2,…,N,这是一个十分古板的传统,正是因为这个传统,德军送给了盟军统计学家需要的数据。盟军在战争中缴获了德军的一些坦克并且获取了这些坦克的编号,现在统计学家需要在这些编号的基础上估计N,也就是德军的坦克总量,而这通过一定的统计工具就可以实现。
本文标签:
[!--temp.ykpl--]