五年级数学小日记九篇
日记是指用来记录其内容的载体,作为一种文体,属于记叙文性质的应用文。以下是小编整理的五年级数学小日记九篇,欢迎阅读!
【篇一:分数】
最近我们学习了分数的再认识,分数的再认识已经不仅仅是几分之几。而是用图来表示分数,比如说一个圆形,平均分成四块,每一块就是圆形的四分之一。我们还学习了真分数和假分数。假分数就是分母比分子小或分母分子相同,而真分数就是分母比分子大。所以假分数就大于1,而真分数就小于1。
比如说有两个一样的图形,每个图形都平均分成两份,第一的图形涂了两个格子(一分之一),而第二个图形只涂了一个格子(二分之一)。这两个图形可以用真分数来形容,那就是四分只一,用假分数来形容就是二分之三,也可以用一又二分之一来形容。这是带分数,带分数是由一个整数和一个真分数的组合而成的。
假分数可以化成带分数,而带分数也可以化为假分数。假分数如何化成带分数呢?就用它的分子除于它的分母,再从上念到下。比如说是三分之七的话,那化成二又三分之一。商就是那个整数,而除数就是分母,余数就是分子,所以就是二又三分之一。
我们还学了分数和除法,被除数除于除数就等于除数分之被除数。
【篇二:奥数难题】
傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥。请问:果园里有苹果树和梨树各多少棵?
我没有被这道题吓倒,难题能激发我的兴趣。我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥,而实际他每天只给50棵苹果树施肥,差了10棵,最后共差了80棵,从这里可以得知,老王师傅已经施了8天肥。一天20棵梨树,8天就是160棵梨树,再根据第一个条件,可以知道苹果树是480棵。这就是用假设的思路来解题,因此我想,假设法实在是一种很好的解题方法。
【篇三:数学训练】
今天,我在数学1+2训练上看到这么一题,在一底面积为648平方厘米的立方体铸体中,以相对的两面为底去掉最大的一个圆柱体,求剩下的立体图形面积是多少?
看到这个题目,我犯糊涂了,想:只告诉一个底面积,这怎么求啊?坐在椅子上的妈妈看了,嘲笑我说:“哼,还说高水平哩,连这道题都不会做。”
我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完。为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来,但是我并没灰心,继续做了下去,我做了出来。
根据图(要画图)可以发现,切掉一个圆柱,又出来一个同原来圆柱同样大的洞,虽然这洞与圆柱体体积相同,但是它们的表面积并不相同,而是比原来圆柱少了两个底面的面积。
所以剩下的图形面积应该等于正方体6个面的面积减去圆柱的两个底面+圆柱的侧面。
列算式是628×6-628×3·14÷4×2+628×3·14
【篇四:五年级数学日记】
今天,我去学校报名回家后,包好书皮,就开始计算这学期我支出的费用。
首先是学费。学费410元,加上饮水费20元,共430元。接着是奥林匹克数学学校的收费180元,估计还要20元的乘车费用,共200元。还有练习本的钱:《课课通》2本21·5元;《英语练习》1本9·9元;2本《试卷课课通》15·9元。《江苏大试卷》3本21元。21。5+9·9+15·9+13+21=81·3(元)。
学习用费:430+200+81·3=711·3(元)。
生活用费:这学期大概要喝完5箱牛奶,5×30=150(元)。每顿饭大概要2~3元,算它2·5元,2·5×3×30×5=1125(元)。“还有什么呢?”我咬着铅笔自言自语道,“还有你的学习用品。”哎,妈妈回来了。没错,还有学习用品。
学习用品:一只笔袋8元,一只铅笔盒3元(很便宜,清仓货),六枝铅笔3元,一块橡皮0·5元,两把三角尺1元,两枝自动铅笔5元,8+3+0·5+1+5=20·5(元)。
总支出:711·3+150+1125+20·5=2006·8(元)。
哇,没想到,平时不太花钱的我,竟然会让父母花2006·8元钱在我这一学期上。看来,我可要节约用钱呀!
【篇五:圆柱的好处】
数学无处不在,身边就有许许多多的数学,数学是不可缺少的,不然会给生活带来种种的不便,让我们一起来寻找数学,探索数学。
“圆”,我们随处可见,月饼盒、茶叶罐、药盒的底面不都是圆吗?不过它们整体叫做圆柱。拿起这些圆柱体你也许会想,为什么要把底面作成圆的呢?为什么不做成长方形,正方形呢?原先我也这样置疑过,不过现在我可以帮你解决哦。
你用同样的材料各做一个长方体、立方体和圆柱体时再来计算体积,这是我们就会发现,圆柱体的体积最大,立方体的体积第二而长方体最小,这时我懂了,为了节省材料,就把这些盒子作成圆的,这样还使体积扩大。
这就是圆柱的好处。
【篇六:斤和千克的区别】
斤和千克是一样的,而他们的用处却不一样,今天我问了奶奶,奶奶高诉我告诉我了斤和千克的互化方式。我简单地再这写一下;
1斤=0。5千克=10两=500克而且告诉我“千克”是国家法定计量单位,1千克=1000克。“斤或两”应为“市斤或市两”,俗称“斤或两”是国家废除的计量单位,1市斤=10两或1市斤=500克。因此,千克和克,斤,两在量值上的换算关系为:1千克=1000克=2市斤=20两
而且我上网查了资料知到了《千克的认识》是培智学校数学教科书第九册中第四章《千米、千克的认识》第一课时的教学内容。千克虽是生活中常用的重量单位,但由于斤在生活中还未完全消失,学生并不十分熟悉千克,因此建立千克的概念对弱智学生来讲更加困难。再者,重量单位不像长度单位那样直观、具体,不能靠眼睛观察得到,只能靠借助工具、肌肉感觉来感知,为了让学生了解每一个单位的实际重量,并能够在实际中应用,在教学过程中,通过让学生看一看、掂一掂、猜一猜、称一称等实践活动,增加学生对“千克”的感性认识。又通过称同一物体的重量,得出千克与斤的关系,很具体地感知斤和千克之间的进率。和一些让学生能好好的认识千克和斤
如上堂课让老师给同学们留了一个调查作业,让我们去菜市场看看卖菜、卖水果小商贩是怎样叫卖的,但不知道我们完成的怎么样。也可这样说生:土豆0.5元一斤、葡萄2.5元一斤、豆角5元三斤……
【篇七:数学日记】
今天,我跟着妈妈去菜场买菜。妈妈说:“今天要考考你,会不会自己去买样你喜欢吃的菜。”妈妈给了我20元钱,要看看我的表现。“保证完成任务。”我自信地说。于是,我边走边看,来到蔬菜区。这时,我看到一个阿姨在卖白白嫩嫩的新鲜蘑菇。我想:家里还剩下的青菜可以和蘑菇放汤吃。于是,我问卖菜的阿姨:“阿姨,蘑菇多少钱一斤?”那位阿姨笑眯眯地对我说:“小朋友,这蘑菇7元一斤,那你要买几斤呀?”“阿姨,我只要买半斤。”我想:7除2等于3.5元,20减3.5等于16.5元。想着想着,我便一张20元钱的纸钞了给阿姨,并提示她还要找我16.5元。我又来到肉类区,看到一个叔叔在卖肉,便问:“叔叔,条肉多少元一斤?”“10元一斤。”“那我买一斤。”我又想:16.5减10等于6.5元。我就把16.5元中的10元递给了那个叔叔。
当我从菜场出来,妈妈看到我手中既有荤又有素和6.5元时,笑着对我说:“学会买菜了!”
通过这次考验,我感到我们的生活中躲藏着许多数学奥秘,学会数学的本领真的很重要。而且,我们应该不骄傲,要努力地学习和掌握更多的数学本领,才能够学以致用,解决身边的问题。
【篇八:生活离不开数学】
以前,我一直认为学习求最小公倍数这种知识枯燥无味,整天与求11和12的最小公倍数类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。然而,有一件事却改变了我的看法。
那是前不久的事了,爷爷和我一起乘坐2路汽车去青少年宫。就在车子快要出发时,1路汽车正好与我们同时出发,此时爷爷看前面的这两辆车,突然笑着对我说:“泽群,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:“行!”“那你听好了,如果1路车每3分钟发车一次,2路车每5分钟发车一次,这两辆车至少要经过多少分钟后又能同时发车呢?”稍停片刻,我说:“爷爷,你出的这道题还缺一个条件:1路车和2路车的起点是在同一个地方。”爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:“我这个‘数学博士也有糊涂的时候,出的题不够严密,还是泽群想得周全。”我和爷爷开心地哈哈大笑起来.此时爷爷说:“那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:“再过15分钟。因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3×5=15),所以15就是它们的最小公倍数,也就是两路车至少要再过15分钟能同时发车。”爷爷听了,夸我:“答案正确!100分。”耶。听了爷爷的话。我高兴地举起双手。
这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。
【篇九:数学充满了奥秘】
今天中午,我正在做数学作业。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长。一个则是长方体正面,上面除以上一条外另一条
棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。
最后,我得到了结果,为374立方厘米。我的算式是:209=11×1919=2+1711×2×17=374(立方厘米)
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。
解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
本文标签:
[!--temp.ykpl--]