“花之冠”数学教学随笔
俗话说,万事开头难,要想上好一堂课尤其是理论性很强的数学课,更离不开好的导入。几年来,我一直努力探索和研究,总结出了数学课的以下几种导入方法。
一、温故知新导入法
温故知新的教学方法,可以将新旧知识有机地结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲“奇偶性“时,可叫学生复习单调性的有关性质,做一联想和对比,从而引进奇偶性的有关概念。这样导入,学生能从旧知识的复习中发现一串新知识,清楚奇偶性与单调性的关系,并且掌握了奇偶性的有关性质。
二、创设情境导入法
数学知识的获得,往往是通过时间得来的,数学知识的探求过程为我们展示了丰富的知识背景。选取具体的背景,可以使学生如临其境,生动形象。例如我在执教“相互独立事件同时发生的概率”时,创设如下情景:常说三个臭皮匠顶一个诸葛亮,能顶上吗?已知诸葛亮解出问题的概率为0.8,三个臭皮匠能解出问题的概率分别为0.5、0.45、0.4,且每个人必须独立解题,那么三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?
三、实践导入法
实践导入法是组织学生进行实践操作,通过学生自己动手动脑去探索知识,发现真理。例如在讲“椭圆定义”时,预先布置学生带好图钉、绳子、纸。在课堂内告诉他们方法,让他们自己发挥,使学生享受到探索新知识的快乐。
四、反馈导入法
根据信息论的反馈原理,一上课就给学生提出一些问题,由学生的反馈效果给予肯定或纠正后导入新课。如在上“求函数定义域”时,课前可以先拟几个有代表性的习题让学生到黑板上练习,从学生练习的结果和学生的反馈中老师就可以发现问题。
五、设疑式导入法
设疑式导入法是根据中学生追根求源的心理特点,一上课就给学生创设一些疑问,创设矛盾,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知的一种方法。例如:在讲到指数函数时,首先以一个学生很熟悉的细胞分裂问题引入,引发学生的兴趣,从而使学生带着好奇进入思考。
六、直接导入法
教师一站在讲台上就开门见山、单刀直入,用几句话引入新课。这样,使学生的情绪很快能安静下来,既起到组织教学的目的,又为后面的巩固练习留下了充足的时间。如在讲函数单调性的证明时,直接提出函数单调性的定义,告诉学生直接从图象观察出来的单调性并不精确,只有通过定义证明才行,提出用定义证明的方法步骤,进行证明。这种方法直截了当,让学生容易理解。
七、观察导入法
据数学概念形成的规律,概念教学必须遵循从具体到抽象、由感性认识到理性认识的原则,教学新概念要建立在生动形象的直观上。例如在介绍分类计数原理与分步计数原理时,就学生很常见的乘车的例子引入,从简单的生活例子升华到抽象的数学原理,不至于学生在学习的过程中觉得枯燥。这种观察引入的方法进一步沟通了新旧知识的联系,使学生学得轻松愉快,概念理解深。
八、故事引入法
有与教材有关的故事引入,课堂会出现“洗耳恭听”的势态。例如在教“等差数列求和公式”时我先讲了一个数学小故事:德国的数学家高斯读小学时,老师出了一道算术题:“1+2+3+……+100=?”老师刚读完题目,高斯就写出了答案----5050,而其他同学还在一个数一个数地挨个相加呢。高斯是用什么方法做得这么快呢?这时学生出现惊疑,产生一种强烈的探究反响。我再点明课题:这就是今天要讲的等差数列的求和方法—倒序相加法。
俗话说,好的开头是成功的一半,上课伊始就能吸引学生的注意力和引起兴趣,产生强烈的好奇心和求知欲,教学往往会达到事半功倍的效果,其关键就是要创造最佳的课堂气氛和环境,充分调动学生内在的积极因素,激发他们的求知欲,使他们处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
本文标签:
[!--temp.ykpl--]