四年级上册《三位数乘两位数》教案设计

文章 2019-07-16 07:09:13 1个回答   ()人看过

(一)教学目标

1.使学生掌握用一位数乘两位数(积在100以内)或几百几十的数的口算方法。

2.使学生能根据两位数乘两位数的笔算方法,推出并掌握三位数乘两位数的笔算方法。

3.使学生知道速度的表示法,经历从实际问题中抽象出时间、速度和路程之间的关系,并应用这种关系解决问题的过程。

4.使学生掌握乘法的估算方法。在解决具体问题的过程中,能应用合适的方法进行估算,养成估算的习惯。

(二)教材说明和教学建议

教材说明

关于整数乘法运算的学习,本学期已进入了尾声。即本单元的学习内容是义务教育阶段整数乘法的最后一个知识块。它是在学生掌握了两位数乘两位数的计算方法的基础上进行教学的。本单元主要内容有:口算乘法,笔算乘法,常见数量关系──速度、时间和路程之间的关系,以及乘法的估算。这些内容的结构如下:

本单元教材在编排上有下面几个特点:

1.创设与教学内容相融的学习情境,在解决问题的过程中教学计算。

《数学课程标准》指出:“在本学段的教学中,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境。”学习三位数乘两位数的乘法,涉及的知识背景十分广阔,在广阔的知识背景中,哪些是学生感兴趣的、又与本单元知识背景密切相关的呢?面对眼花缭乱的众多素材,编者选择了不同的交通工具作为学习素材。这是因为速度、路程和时间之间的抽象关系是以不同交通工具的运动为载体的。因此,本单元选取不同交通工具的运动为素材,引领学生学习三位数乘两位数的乘法。一方面让学生进一步体会乘法在解决问题中的作用,另一方面为理解速度、时间和路程之间的关系提供丰富的背景资源。

2.注重学生的自主探索,培养学生迁移类推能力。

三位数乘两位数的计算方法,与两位数乘两位数的计算方法,在算理上是一致的,所不同的是一个因数的位数由两位变成了三位。教材在充分考虑学生已有知识经验和认知发展水平的基础上,积极引导学生将旧知迁移到新知。教材安排的多道例题(例1:145×12、例2:160×30、106×30和例5:49×104≈?)基本上是让学生通过“自己试一试”,在主动探索与合作交流的基础上,进一步理解整数乘法的算理,达到自主掌握三位数乘两位数的计算方法并用它解决简单问题的目的。

3.加强估算,重视培养学生应用数学的意识。

《数学课程标准》指出,“估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值”。本单元以单列一个例题的方式(例5),组织学生学习三位数乘两位数的乘法估算,让学生进一步理解估算是生活中常用的计算方法,估算的方法虽不确定,但必须符合以下两个要求:一是符合实际,二是计算方便。如,例5的教学通过解决购票的具体问题,使学生理解将票价和购票的张数适当的估大一些,并把它们分别估成整十数、整百数或几百几十的数,这样才能方便算出足够的钱买票。另外,教材在练习十中安排了6个需用估算的方法来解决的简单问题,使学生通过解决这些问题进一步掌握估算的基本方法,理解什么时候应将因数估大一些,什么时候应将因数估小一些,形成具体问题具体分析的辨证观点。

4.适当加大练习量,同时体现弹性要求。

三位数乘两位数是整数运算中有关乘法学习的最后一部分知识,具有一定的总结性和概括性。为了让学生掌握好这最基本的运算知识,本单元练习的题量与第一学段相比稍有增加,使学生通过一定题量的练习,牢固掌握整数乘法的相关知识。同时,带“*”的题与思考题的数量也增加了,本单元每个练习都配有一定数量的带“*”的题和思考题,以体现“让不同的人学不同的数学”的课改理念,满足不同学生的学习需求,为学有余力的学生提供更多更广阔的学习内容。

教学建议:

1.注意让学生自主掌握乘法运算的基本方法。

本单元学习的乘法运算,不论是口算还是笔算,估算还是用计算器算,其基本算理和运算方法学生是不陌生的。因为在第一学段,在学完两位数乘两位数后,学生已掌握了乘法运算的基本技能。从这个角度上说,本单元所学知识,属于旧知。所不同的,仅仅是运算数据由万以内扩充到了亿以内。根据学生已有的这个知识基础,在教学时,可放手让学生通过自主探索、亲身实践、合作交流等活动,自行总结出口算、笔算、估算的一般方法。如,口算乘法中例1,笔算乘法中例1.例2.例5的学习,都应让学生在独立思考、自主运算的基础上,概括出一般性的通法。教师在这个过程中,只起引导作用,引导学生准确把握不同算法中的特点,尽可能选择多种算法中较优化的一种,采用合理、简洁、灵活的方法进行计算。

2.重视引导学生探索运算中的数量关系,初步学习模型化的数学方法。

三位数乘两位数的学习不仅要让学生掌握整数乘法的计算技能,还应当让学生掌握简单的具有实际背景的常见数量关系,并且能够用关系式或数学符号去表达它们。本单元学习的速度、时间和路程之间的关系,是社会生活中常见的数量关系中的一种,刻画这三者关系的数学模型“速度×时间=路程”将三者简明逻辑地联成一体。教学时,应注重让全体学生通过解决例3中的具体问题,感悟速度、时间和路程之间的数量关系。经历将运动中的具体问题抽象成数学模型“速度×时间=路程”的全过程,经历将抽象的数学模型用于解决具体问题的全过程。让学生在“解决具体问题──抽象出数学模型──解释并说明模型──再用模型解决问题”这样一系列的数学活动中,建立初步的模型化的数学思想方法。

3.以探索运算中数值规律的练习为载体,发展学生的推理能力。

利用乘法运算,培养学生的推理能力,特别是合情推理能力是本单元教学的重要任务。本单元在练习设计中,安排了多个引导学探索数值规律的练习,如练习六中的第8题、思考题,练习七中的第12、13题、练习八中的第10题等等。这些题虽然都打上了“*”号,不作教学要求,但却是发展学生推理能力的好素材。教学中,应鼓励、引导学生参与到探寻运算中数值规律的活动中去,通过观察数据特点,尝试用简便的方法进行计算,解释计算的合理性等有序活动,不但可使学生形成合理、灵活的计算能力,而且能培养学生的数感和推理能力。

4.这部分内容可以用9课时进行教学。

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: