《统计和求平均数》教学设计范文

文章 2019-07-15 10:23:05 1个回答   ()人看过

教学内容:

苏教版小学数学第6册第92—94的内容。

目标预设:

1.使学生在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。

2.学会运用平均数的知识解释简单生活现象、解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

3.让学生在轻松愉悦的氛围中主动参与、乐于合作、充分体验,感受数学与生活的密切联系,激发学生学习数学的兴趣。

重点、难点:

在具体情境中理解平均数的意义,掌握求平均数的方法,解决简单的实际问题。

教学过程:

一、创设情境,引出平均数

1.谈话:小朋友们,喜欢体育运动吗?小明、小林和小刚也和你们一样爱好体育,就在昨天,他们还进行了一分钟的投篮比赛呢,比赛的情况怎样呢,咱们一起来看看吧。

2.师:首先上场的是小明,每个人都是投3次,第一次计时开始。(课件播放视频),他1分钟投中了8个,我们可以在统计图上表示出来(出示统计图),还有两次机会,不过,小强后两次的投篮成绩很有趣。(出示统计图,第二次、第三次都投中了8个)

师:真巧,小明三次都投中了8个,现在看来,要表示小明1分钟投中的个数,用哪个数比较合适?为什么呢?

3.师:说得有道理。接着该小林出场了。小林投篮的情况怎样呢?

一起看统计图,三次投篮,结果怎么样?(分别投中了6个、7个、8个)

师:是呀,三次成绩各不相同,该用哪个数表示小林1分钟投篮的一般水平呢?

预设:

生1:可以用8来表示,因为8是投中个数最多的一次。(引导:小明每次都投中8个,所以用8来表示他的成绩。但小林另外两次分别投中7个和6个,怎么能用8来表示呢?也就是说,如果也用8来表示,对小强来说不公平!)

生2:用6来表示。(引导:6是投中个数最少的一次,还有两次比6多,如果用6表示,对小林来说不公平。)

生3:可以用7来表示,因为6、7、8三个数,7正好在中间,最能代表他的成绩。

师:一次比7多1,一次比7少1 。那么,从8个里面拿一个给6个,这样看起来每次都投中了7个,用7表示小林1分钟投篮的个数比较合适。 (师结合学生的交流,在统计图上呈现移多补少的过程,)

说明:像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”(板书:移多补少),这种方法对两人来说比较公平。

4.最后轮到小刚出场了。

师:看到小明和小林表现这么出色,小刚感觉到有压力了,(出示统计图:分别投中了3个、7个和2个)这一回,又该用几来代表他1分钟投篮的一般水平呢?同学们先独立思考,自己想办法解决这个问题。觉得有困难还可以借助学具摆一摆。

全班交流:

生1:我觉得可以用4来代表他1分钟的投篮水平。他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。所以用4来代表比较合适。

(结合学生交流,师再次呈现移多补少过程。)

师评价:真了不起,刚才学到的方法马上就能用上了。还有别的方法吗?

生2:我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。

师板书:3+7+2=12(个),12÷3=4(个)

师:像这样先把每次投中的个数合起来,然后再平均分给这三次。

(板书:合并、平分),能使每一次看起来一样多吗?(一样多)这也能代表小刚1分钟投篮的一般水平

师:其实,无论是移多补少,还是先合并再平均分,目的只有一个,那就是——使原来几个不相同的数变得同样多。

5.师:数学上,我们把原本不相同的数经过处理得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,4是3、7、2这三个数的平均数。

思考:这里的平均数4能代表小刚第一次投中的个数吗?(不能)能代表小刚第二次、第三次投中的个数吗?(也不能)那它表示什么呢?(这里的4代表的是小刚三次投篮的平均成绩)

师:它与三次投篮的个数比,你觉得怎样?(引导学生发现比最大的数小,比最小的数大。)

小结:在不知不觉中平均数走进了我们的课堂,现在你对这位新朋友有哪些了解呢?(若学生难以回答,师:刚才我们只是初步认识了平均数,体会不够深刻,接下来就……)

学生自由回答后,教师问:如果他们投篮4次,怎样计算4次投篮的平均成绩呢?

二、联系生活,感受平均数

师:让我们一起走进生活,去研究更多的有关平均数的问题。

1.“想想做做”第2题

师:你估计这三条丝带的平均长度多少?

动笔计算验证估计得是否正确。

追问:如果我算出来的平均长度是13厘米,可能吗?

2.师:下面这些问题,同样需要我们借助平均数的特点来解决。瞧,学校篮球队的几位同学正在进行篮球比赛。我了解到这么一份资料,说李强所在的篮球队,队员的平均身高是160厘米。那么,李强的身高可能是155厘米吗?

师:为了使同学们对这一问题有更深刻的理解,课前老师了解了我们班同学的平均身高是135厘米,请超多、不足或刚好是135厘米的同学分别站起来,让学生加深理解。

3.好了,探讨完身高问题,我们再来看看池塘的平均水深。

师:冬冬来到一个池塘边,发现了什么?(平均水深110厘米。)

师:冬冬心想,这也太浅了,我的身高是130厘米,下水游泳没问题的。你们觉得冬冬的想法对吗?

小组交流后汇报.

师:你觉得有危险,你想怎样提醒冬冬呢?

预设:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能 会有危险。

师:说得真好!想看看这个池塘水底下的真实情形吗?

(师出示池塘水底的剖面图,如图12)

师:看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。

4.期中检测成绩出来了,你觉得要给我们三年级三个班排排队,比什么更合适?比总数行吗?(人数不等)

我们班的平均分80分,猜猜看,老师是怎么算的?(把每个学生的分数加起来得到总分,再除以人数)

三(2)班的平均分是75分,蔡加铖成绩是咱们班第一99分,一定比三(2)班某某同学分数高,肯定吗?为什么?

5.出示李楠同学的成绩单,

语文 数学 平均分

96 98

师:不小心沾到了墨水,数学成绩看不清了,猜猜看,可能是多少呢?

引导观察:超出平均数的部分和不足平均数的部分同样多。

检验:如果语文考了100分,怎样计算两们学科的平均成绩呢?

6.“想想做做”第4题

出示华江果品店上星期卖出苹果、橘子数量统计图。

(1)哪两天卖出的苹果同样多?哪一天卖出的苹果和橘子同样多?

(2)你能根据今天所学的知识提出一个合适的问题吗?

指名学生提出问题并解答。

三、课堂小结,课后延伸

师:今天我们一起学习了有关统计和平均数的知识,通过这节课的学习,你有哪些新的收获呢?(学生自由说)

提出要求:希望同学们做一个有心人,去观察、了解更多的有平均数的知识,相信你会有更多的收获!

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: