初三数学相切在作图中的应用教学设计

文章 2019-07-14 21:00:51 1个回答   ()人看过

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:使学生理解画连接图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础.

难点:①对连接图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置的确定.

2、教法建议

(1)在教学中,组织学生寻找一些身边的有关连接的实际问题,画出比例图,既调动学生的积极性,培养了兴趣,又获得了知识;

(2)在教学中,以实际问题概念引出理解实际应用为主线,开展在教师组织下,以学生为主体,活动式教学.相切在作图中的应用(一)

教学目标:

(1)理解线段与弧、弧与弧连接的概念及连接的原理;

(2)通过对 连接等概念的教学,培养学生的理解能力;

(3)通过线段与弧的连接,圆弧与圆弧的连接,培养学生的作图能力;

(4)渗透世界上很多事物是互相联系着的,并且在一定条件下相互转化.

教学重点:

正确理解连接的原理,初步掌握线段与圆弧连接、圆弧与圆弧连接的实质,会进行各种连接.

教学难点:

连接原理的正确理解和作图时圆心、半径的确定

教学活动设计:

(一)实际问题引出概念

我们在生活中常见到一些机器零件,它的边缘是圆滑的,我们最熟悉的操场上的跑道,它的跑道线也是很圆滑的.

想一想:跑道线是怎样的线组成的?

画一画:跑道的大致图形.

指导学生发现线线的位置关系,引出连接的有关概念:

1、由一条线(线段或圆弧)平滑地过渡到另一条线上,这种平滑地过渡,称圆弧连接,简称连接.

2、连接时,线段与圆弧、圆弧与圆弧在连接处相切.

3、外连接、内连接.

组织学生阅读理解教材内容

(二)深刻理解概念

连接是平滑地过渡,怎样算平滑?像下面图中,实线画出的线段和圆弧,圆弧和圆弧,虽然也有相切的关系,但它们不是连接.

理解:线与线连接有两个必备条件:①连接时,线段与圆弧,圆弧与圆弧在连接处相切.②线段与圆弧应分居在圆心与切点所在直线的两侧;圆弧与圆弧分居在连心线的两侧,二者缺一不可.

(三)圆弧与线段、圆弧与圆弧连接图形的画法

例1: 已知:线段AB和r(如图).

求作: ,使它的半径等于r,,并且在点A与线段AB连接.

作法:1、过点A作直线PAAB.

2、在射线AP取AO=r.

3、以O为圆心,r为半径作 ,使AB、 在OA的两侧.

就是所求作的弧.

说明:画圆弧与线段的连接,主要运用了切线的性质定理的推论2:经过切点且垂直于切线的直线必过圆心,找出了圆心,圆弧也就不难画了.

例2、 已知: 半径为R1,圆心为O1;线段R2.

求作:半径为R2的 ,使 与 在点A外连接.

作法:1、连结O1A,并且延长到点O2,使O1 O2 = R1+ R2.

2、以O2为圆心,O1 O2为半径作 ,使 与 在的两侧.

就是所求作的弧.

说明:画圆弧与圆弧的连接,主要运用两圆相切,切点一定在连心线上这个结论.

练习题:P148练习,1、2.

(四)小结

主要内容:

1、什么是连接?什么是外连接?什么是内连接?

2、任何一种连接,其实质就是两线相切,在切点处相连接,是切点两侧的线段和圆弧或圆弧与圆弧相连接.

3、对于给出的题目,画出连接图形关键在于确定圆心.

(五)作业

教材P151习题A组16.

课外题:画一个生活中的有关连接图形的比例图,下节课展示.

相切在作图中的应用(二)

教学目标:

(1)进一步理解连接等概念及连接的原理;

(2)进一步培养学生的作图能力;

(3)通过对作图题的分析,培养学生的分析问题能力.

教学重点:

深刻理解连接的意义,能对具体图形熟练地进行弧连接.

教学难点:

作图时圆心、半径的确定

教学活动设计:

(一)概念复习与理解

练习1、下列命题中,正确的是(C)

(A)将一段弧和一条线段连到一起的图形叫连接;

(B)一段给出半径的圆弧可以和一直线连接;

(C)两段给出不等半径的圆弧可以用内、外两种连接方式连接;

(D)两段圆弧内切就是内连接.

练习2、内、外连接的区别是( C )

(A)内连接两弧在连心线同侧,而外连接两弧在连心线两侧;

(B)内连接两弧在切点同旁,外连接两弧在切点两旁;

(C)内连接是内切两圆弧连接,外连接是外切两圆弧连接;

(D)内连接是外切两圆弧连接,外连接是内切两圆弧连接.

(二)连接图形的应用

例3、(教材P148)如图,要把零件中直角A加工成半径为15mm的圆角(即用一条半径为15mm的圆弧连接边AB与边AC)在图上画出这条圆弧.

分析:圆弧的半径已知,要画出这条圆弧,只要求出它的圆心即可.因为圆弧要与AB和AC都相切。所以圆心到边AB和AC的距离都等于15mm,实际上四边形AEOP是正方形,它的顶点O在CAB的平分线上.

(参看教材P148)

充分给学生时间让学生自己分析、研究、写出画法,画出图形.

练习:把两边长分别为8cm和5cm的矩形的4个直角改画成圆角,使圆弧的半径等于1cm.

(三)展示作品

对上节课课外作业中较好的连接图形,展示.既提高学生的学习积极性,又激发学生在教学过程中的参与热情.

(四)小结

1、连接在实际生活中的应用,可以改变物体的表面形状.

2、任何一种连接的问题经过分析后都能转化为基本图形:线段与弧的连接;圆弧与圆弧的内连接;圆弧与圆弧的外连接.

3、连接的关键是确定所求圆弧所在圆的圆心.

4、线段可在一点处与两条弧同时连接.

(五)作业 教材P154中18,B组2.

探究活动

问题:如图三圆两两相切,切点分别为C、O、D,与半圆O分别切于点A、E、B,请你找出图中除线段AB和弧以外的6条从A点平滑过渡到B点且没有重复弧的路线,并指出在经过个点处是什么连接(内连接、外连接).

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: