关于电力系统的优秀论文
【摘要】在电力系统中应用储能技术,具有积极的现实意义。分析储能技术和它在电力系统的具体应用情况,能够客观的反映出目前储能技术的发展水平,也可以发现哪些因素会制约它在电力系统中的发展,更是对其未来发展前景的一种探索。下面我将简单阐述储能技术的内涵和原理,以及特点,存在的问题,探讨储能技术在电力系统中的实际应用情况。
【关键词】储能技术;电力系统;应用;前景
随着经济的发展和科学技术的进步,我国的智能电网事业也获得飞速发展,通过新能源发电被广泛的利用起来。相关企业和科研工作者开始意识到储能技术的重要性。储能技术的类型丰富多样,可以应用到输变发用配各个环节,不管是它的功率,容量还是技术和响应时间,在性能上都存在差异,应用在电力系统中必须根据实际情况进行科学合理的选择,最大化的把储能技术的价值发挥出来。
1储能技术
1.1类别
按照能量的差别,我们可以把储能技术大致划分为下面几种类型:①基础燃料能量的存储,比如石油,煤和天然气;②中级燃料能量的存储,比如煤气,氢气,太阳能燃料;③对后续消费能量的储存和电能的存储,比如相变储能。笔者主要对电能储存技术进行分析和探讨。根据能量的形式,可以把电能存储氛围化学和物理两部分,其中物理储能又能分成电磁场储能和机械储能。
1.2机械储能
1.2.1抽水蓄能抽水蓄能的发电站一般情况下由上下水库,发电系统和输水系统构成,并且下水库和上水库之间是有落差的。当电力负荷处于低谷时,可以把下水库中的水抽入上水库,通过水力势能的方式存储能量;当负荷属于高峰阶段,再把上水库中的水引入下水库用于发电,把水力势能转变为电能。这项技术发展稳定,相对成熟,寿命在30~40年之间,它的储能容量,规模还有功率非常大,除了书库的库容外,不受其他条件的限制,一般处于100~2000MW范围内。同时,抽水蓄能也存在缺陷,它受制于外在地理条件,建造水库的地质必须符合相关要求。它的关键技术具体有工程地质技术,选择抽水蓄能电站的主要参数的技术,抽水蓄能机组技术。1.2.2压缩空气储能在燃气轮机技术的基础上出现了一种新的能量储存系统,即压缩空气储能系统。它的主要工作原理是:电力系统用电出现低谷时,通过富余的电量发动空气压缩机,通过压缩空气把能量储存起来;电力系统处于用电高峰时,释放出高压空气,给发电机正常工作提供能量支持。相关科研人员对于压缩空气储能系统的调研从未停止过,导致压缩空气储能系统的形式非常丰富多样,根据应用规模和热源的差异,把它划分成下面几种:①传统的利用地下洞穴和天然气进行储能的电站,一台机组的规模大于100MW;②新型压缩空气进行能力储存的系统,告别了地下洞穴和天然气的使用,可以把一台机组的规模控制在10MW以下。按照储能系统和其他热力系统是否可以耦合,又可以把它分成燃气蒸汽联合循环耦合系统,燃气轮机系统,内燃机系统和制冷循环耦合系统。具体而言,当前的空气压缩储能技术相对成熟,效率也比较高,可以达到70%,可以还是受到化石燃料和地理条件的制约。1.2.3飞轮储能通过旋转体即飞轮的运动的方式进行能量存储是飞轮储能的主要工作原理。存储阶段,在电动机的作用下,可以增加飞轮旋转的速度,把电能变成动能;释放能量的过程中,飞轮的转动速度会降低,电动机发挥发电机的作用,把动能变成电能。这种储能方式,转换能量的效率比较高,也不会对环境造成破坏,环保能力好,功率密度高,使用寿命长,但是它的自放电率相对高一些,而且存储能量的密度比较低。
1.3化学储能
化学储能主要利用化学反应,实现电能和化学能量的相互转换,进行能量存储。电池作为转换能量的主要载体,种类丰富多样,它的电化学反应和内部组成材料存在差异,但是却有着基本相同的内部核心结构,全是正负极,电解质和隔膜构成的。正极是电池内部高电势的一端,负极是电势低的一端。进行充电时,正极内的活性材料被氧化,失去电子,阳离子在电场和电解质的作用下来到负极,流失的电子顺着外电路的方向向负极移动,最终和负极内的活性材料相融合,产生还原反应。充电过程和放电过程是相反的。化学储能方式可以根据应用需求的不同灵活的配置能量和功率,摆脱了地理条件的制约,反应能力好,可以批量化生产和大规模应用。但是他也存在短板,比如电池的成本高,寿命短,都是需要日后进行改进完善的地方。
2储能技术在电力系统中应用的评价指标
能否让储能技术在电力系统中发挥出最大的功效,一方面受到它能否达到特定的等级和规模的影响,受到它能否和工程应用的设备形态相符影响,另一方面,也受到它自身的技术经济性和安全可靠性影响。要想在未来把储能技术广泛的应用到电力系统中,一定要保证它的规模可以达到兆瓦级/兆瓦时级;还要保证应用到电力系统中的储能系统,适合标准化和批量化的生产,方便日常的维护和控制;同时还要结合先进的科学技术,不断的完善电力系统中的储能技术,让它符合电力系统的发展需要和社
本文标签:
[!--temp.ykpl--]