《一位数除两位数、商是两位数的笔算除法》优秀教学设计

文章 2019-07-14 03:38:54 1个回答   ()人看过

教学目标:

1.使学生在理解算理的基础上,初步学会一位数除两位数,商是两位数的笔算方法;

2.进一步培养学生的计算能力,动手操作能力和初步概括能力。

教学重点:

一位数除两位数,商是两位数的笔算方法。

教学难点:

让学生理解算理,掌握除法算式的演算格式。

教学过程:

一、沟通旧知,建立联系1、口算

600÷6 27÷3 240÷8 160÷4

2、笔算

3)9 9)37

二、创设情景,导入新课

1.出示P19植树情境图,让学生说图意。

2. 引导观察:图中告诉我们哪些信息?根据这些信息可以提出什么问题?怎样列式?(根据学生的回答师板演)

42÷2 52÷2

3.师:42÷2等于多少(生:42÷2=21)

你是怎么想的?

(生:40÷2=20 2÷2=1 20+1=21)

同学们会口算出答案,那么怎样用竖式计算呢?(揭示课题)板书:一位数除两位数。

三、自主探索,领悟算法

1.教学例1 42÷2=21

(1)用竖式计算,你们会吗?试试看

学生独立计算后,反馈

第一种 第二种

21 21

2)42 2)42

42 4

0 2

2

(2)比较一下,你喜欢哪一种算法?说说理由。

学生发表意见:(学生多数会喜欢地一种算法,简单、竖式短,很少有学生喜欢第二种也就是课本例题的形式)

师:其实第二种方法有自己的优势,它能让大家很清楚地看出计算过程。

(3)师边用电脑演示边讲解:笔算除法的计算顺序和口算一样,要从被除数的最高位除起。请哪位用第二种方法做的同学上来讲解一下。(师配合补充)

(4)让学生质疑

(还会有一部分学生会提出第一种竖式也很清楚地看出计算过程.)

师:现在就请同学们用自己喜欢的方法列竖式算52÷2

2.教学例2 :

52÷2

(1)学生独立计算后反馈。

第一种 第二种

26 26

2)52 2)52

52 4

0 12

12

(2)你们同意哪一种算法?

学生讨论后得出:第一种是先口算出26的,应该用第二种方法才正确。

(3)师:让我们借助小棒来验证(师生共同摆小棒,师边演示边讲解)

52÷2也就是把52根小棒(5捆和2根)平均分成2份。先把5捆平均分成2份,每份是2捆(20),还余1捆;再把多余的1捆拆开与2根合并是12根也平均分成2份,每份是6根,加起来共分得26根,所以 52÷2=26

师指第二个竖式,被除数十位上余下的“1”,这个1是怎么来的?表示多少?

指商个位上的 “6”,这个6是怎样得来的?同桌互相说一说。

(4)我们再看一看电脑是怎样算的?(电脑演示)谁愿意当小老师把电脑演算的过程再说给大家听听?(指名学生叙述计算过程)

(5)比较例1和例2笔算竖式的区别,强调:笔算除法时,如果十位上除后有余数怎么办?余数和除数有什么联系?

(6)指导看书质疑

3.练习反馈 P20 做一做 1

4.引导概括总结:从哪一位除起?商怎样写?被除数十位上除后有余数怎么办?每次除得的余数和除数有什么联系?

四、 应用新知,解决问题

1.完成下面的除法算式。

1□ □□

4)4 8 6)8 4

4 □

□ □□

□ □□

0 0

2.比赛,看谁算的又对又快?

P20 做一做 2

3.请你当小医生,先诊断,再“治病”。

34 11 1

2)68 6)96 5)60

68 6 5

0 6 1

6

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: