商的变化规律教学设计范文

文章 2019-07-14 03:24:59 1个回答   ()人看过

教学内容:教材第93页例5

教学目标:

1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。

2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。

3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。

教学重点:发现规律,掌握规律

教学难点:利用商的变化规律进行简便计算。

教学准备:,实物投影

教学过程:

一、情境激趣,揭示新课

1、师:同学们,你们喜欢孙悟空吗?你们知道孙悟空有一项特别厉害的本领是什么呢?(生:七十二变)不管孙悟空怎么变,它还是谁?(生:孙悟空)

2、师揭示新课:

数学知识也有这些变与不变的现象,今天我们就一起来探讨这些变化规律。

二、探究体验,建构新知

(一)探究商随除数(或被除数)变化而变化的规律。

1、出示情境-:星期天,谭老师到体育用品商店去买球,乒乓球每个2元,足球每个20元,篮球每个40元,用200元买其中一种球,可以分别买多少个?

情境二:在学校举行的冬季趣味运动会“定点投篮”项目中,每8人一组,16人可以分成多少组?160人呢?320人呢?

(实物投影)展示:A 200÷2=100 B 16÷8=2

200÷20=10 160÷8=20

200÷40=5 320÷8=40

2、组织小组讨论:在刚才两组算式中,藏着很有价值的数学知识,仔细观察,你发现了什么?每一小组可选择自己感兴趣的一组算式进行研究。

小组讨论:

(1)仔细观察被除数、除数、商,你发现了什么?

(2)从上到下任选两个式子比较,什么相同,什么不相同,什么发生了变化?

(3)从下往上看,任选式子比较,什么相同,什么不相同?什么发生了变化?怎样变化?

3、汇报交流,总结归纳商随被除数(或除数)娈化的规律。

研究A组题的学生汇报:

研究B组算式的学生汇报:

4、师:通过刚才大家的发现与交流,我们看到在被除数不变时,商随着除数的变化而变化;在除数不变时,商又随着被除数的变化而变化,假如要使商不变,同学们猜一猜被除数、除数该怎样变化?

(二)探究商不变的规律。

1、情境三:故事“猴王分桃”引入探究商不变的规律。

花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴分桃子。猴王说:“给你4个桃子,平均分给2只小猴吧。”小猴听了,连连摇头说:“太少了,太少了。”猴王又说:“好吧,给你40个桃子,平均分给20只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你400个桃子,平均分给200只小猴,你总该满意了吧?”这时,小猴子笑了,猴王也笑了。

师:谁的笑是聪明的一笑?为什么?

2、学生交流,口述算式:

4÷2=2 40÷20=2 400÷200=2

3、师:认真观察这一组算式,当商不变时,你发现被除数是怎么变化的,除数又是怎么变化的?验证一下你刚才的猜想。

4、引导学生交流,学生之间互相补充。

(1)生结合算式说出商不变的规律

(2)用准确的语言表述这一规律

(三)对比观察小结商的三个变化规律

1、引导观察三组算式,商有在什么情况下变,在什么情况下不变呢?

2、生边汇报,师边将表补充完整。

出示表:

被除数 除数 商

不变 变 变

变 不变 变

变 变 不变

师:他们的变与不变是有规律的。正如我们刚才总结的那样。在今后运用规律解决一些实际问题时一定要注意。同时乘(或除以)相同的数,在商不变时还应注意“0”除外。

三、应用练习,拓展提升

1、口算(根据每组第1题的商,口算出下面各题的商)

100÷5 15÷3 72÷9

100÷10 60÷3 720÷90

100÷50 120÷3 7200÷900

2、填空。

120÷30=(120×3)÷(30×□)

60÷12=(60÷2)÷(12○2)

200÷40=(200×□)÷(40○5)

150÷50=(150○□)÷(50○□)

3、看谁算得又对又快?

6300÷700=□8100÷300=□200÷25=□

四、课堂小结

1、这节课你有什么收获?

2、课后拓展:你能把今天所学的商的变化规律与积的变化规律对比,看看它们之间有什么联系和不同点?

5

O

M

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: