八年级数学下册《平行四边形性质》教学反思
小学已经对平行四边形的性质有一定的了解,对边、对角之间的关系是比较熟悉,无需再进行猜想边与角之间的关系,所以我确认本节的重点是引导学生如何将四边形问题转化为三角形问题,以及利用平行四边形的性质进行推理论证培养学生的合情推理能力、探究问题基本方法渗透。对基本的概念,比如平行四边形,对边,对角,对角线等概念,通过引例结合图形,仅仅是进行了简单的认识,最大限度的实现突出主干。
例题1通过本例巩固平行四边形的性质,复习勾股定理和平行四边形的面积公式;规范学生运用性质进行说理的书写格式;教师讲解或引导过程中注意培养学生解题的目标意识。
例题2复习平行四边形的定义,平行线的性质等,巩固证明边相等的另一重要方法:等角对等边;
渗透解决问题的常规思路:
思路1:平行四边形---平行四边形的性质---
思路2:观察,猜想图中与,相等的角有哪
些?(寻找中间等量,实现转化目标的)
思路3:假设法,若(结合条件)
与平行四边形ABCD中相一致,假设成立!
环节(四)课堂知识与方法小结,帮助学生梳理知识,整理方法形成知识结构。
环节(五)A组练习比较简单,题型比较常见,覆盖本节基本知识点,要求100%
学生能独立完成。
B组第1题,巩固例题1平行四边形的面积公式,及平行四边形的性质,以及体验假设法探究思路妙处。第2题渗透整体思想,以及体验观察—猜想—验证探究问题的过程:直观感觉图中相等的边与角(为猜想提供依据)猜想,证明猜想。学生在体验中的感受,就会增强学生探究的兴趣,从而形成一种探究的思考方式,能有效的培养学生的创新精神和创新能力,让学生在探究中热爱数学、学好数学.
本文标签:
[!--temp.ykpl--]