《长方体的体积计算》优秀教学设计
篇一:《长方体的体积计算》教学设计
教学目标:
1、让学生在观察、比较中,感知长方体的体积大小与它的长、宽、高有关。通过具体操作,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,并能运用所学知识解决一些实际问题。
2、在观察、操作、探索的过程中,提高学生动手操作及合作学习能力,培养迁移、类推能力和抽象概括能力,进一步发展学生的空间观念。
3、在个人及小组的探究活动中,培养团队协作,勇于探索的品质,体会数学的应用价值。
教学重点:引导学生探索长方体体积的计算方法。 教学难点:体验公式的推导过程。
教具学具准备:包装盒和一个不规则物体,每组12个棱长为1厘米
的小正方体、表格。
教学过程:
一、复习比较,引入课题
1、(出示两个不同的物体)这两个物体谁比较大?我们比的是他们的什么?体积指的是什么?
2、下面的图形都是由棱长为1厘米的小正方体拼成的,它们的体积各是多少?你是怎么知道的?
3、(出示包装盒)大家认识它吧?它是什么形状的? 它的体积多大呢?请你估一估,猜猜它有多大?(生猜测) 要使他说得更准确,我们用一种科学的方法来计算长方体的体积那就好了。这节课我们就来研究这个问题吧,板书课题:长方体的体积。
二、自主学习,合作探究
(一)探究长方体的体积计算
1、探究长方体的体积和那些因素有关。
师:我们都知道长方体有六个面,这6个面可能是什么形?
学生口答。
大家想一下,长方形的面积和什么有关?(学生回答)那么猜一猜,长方体的体积可能和什么有关呢?(生猜测)
老师这里有几组长方体,(课件出示)大家看,这两个长方体的长、宽、高有什么关系?
由此,我们可以得出什么结论?
2、探究长方体的体积和它的长、宽、高的关系,推导长方体体积的计算方法。
师:那么长方体的体积和它的长、宽、高到底有什么样的关系呢?(每组准备12个小正方体)
(1)老师课前叫同学们准备了一些棱长都是1厘米的小正方体,现在,小组合作,每个小组分别摆出各种长方体,记录它们的长、宽、高,并填表。(学生小组活动)
(2)(汇报交流)你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?
(3)发现总结长方体体积公式
师问:每排的个数、每层的排数、层数与长宽高有什么关系?
生一:每排的个数相当于长,每层的排数相当于宽,层数相当于高。
请同学们想一想:长方体的长、宽、高与它的体积有什么关系? 生一:因为每排的个数、每层的排数、层数相乘就是体积,所以长方体的体积=长×宽×高。
师:体积怎么求?为什么? 学生口答,教师板书。 课件演示公式的推导过程
(4)如果用V表示体积,a表示长,b表示宽,h表示高,那么这个公式用字母怎样表示?
师板书:V=abh
(5)根据这个公式,要求长方体的体积,需要知道长方体的什么? 同生们学会了总结长方体体积的计算方法,真是了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
3、长方体的体积计算公式的应用
(1)师问:在生活中,怎样计算长方体的体积?
例:一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
学生1:长方体的体积=长×宽×高。 全班动笔做一做。
(2)看立体图计算长方体的体积(只列式不计算)写在课堂作业本上。
长6分米,宽4分米,高3分米,求体积。 长6厘米,宽6厘米,高5厘米,求体积。
三、学以致用,巩固提高
1、雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?
2、有一本新华字典,它的长、宽、高分别是2分米、1分米、0.6
分米.这本字典重多少千克?(每立方分米重500克)
3、一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的
体积是多少立方厘米?
4、有一个底面是正方形的长方体,它的棱长之和是60厘米,高
7厘米,求这个长方体的体积。
四、全课小结,布置作业
1、通过这节课你学到了哪些知识?你还有什么问题吗?值得注意的地方是什么?2、教师总结 3、布置作业
① 课堂作业:练习七② 课外实践:找一个长方体实物量一量它的长、宽、高,并计算它的体积。
5、7
篇二:长方体体积的计算教学设计
《长方体体积的计算》教学设计
教学内容:人教版小学数学五年级下第三单元长方体体积的计算。 教学目标:
1.理解并掌握长方体体积的计算方法.
2.能运用长方体体积公式进行计算解决一些简单的实际问题.3.培养学生归纳推理,抽象概括的能力. 教学重点:理解和掌握长方体体积的计算方法. 教学难点:理解长方体体积公式的推导过程. 教学用具:多媒体课件、1立方厘米的小立方体.
教学过程:
一、复习旧知,导入新课. 1.什么是物体的体积? 2、常用的体积单位有哪些?
3、1立方厘米、1立方分米、1立方米分别有多大?
4、(课件出示)下面两个长方体是用1立方厘米的
小正方体拼成的,说出它们的体积各是多少。(9立方厘米、8立方米)你是怎样知道的?(数小正方体的个数)。
师:也就是说:长方体中含有多少个体积单位它的体积就是多少。
5、
(生:切割成小正方体)出示微波炉,那么求这台个微波炉的体积你还想用切割的方法吗?(不能)
6、看来并不是所有的物体都适合用切割的方法,你们想不想知道更
简单更可行的求长方体体积的方法呢,这节课我们就一起来长方体体积的计算(板书课题) 二、动手操作,归纳总结
1、老师为大家准备了一些小正方体,每个小正方体的体积是1立方厘米,谁知道它的棱长是多少?(1cm)
好,下面就请同学们小组合作,用老师准备的小正方体摆成不同的长方体,把不同长方体的相关数据填在表中,然后观察表中的数据,你们能发现什么。
2、小组合作,教师巡视。
3.学生汇报展示说发现,教师板书。
4、教师课件演示.
总结体积公式:长方体体积=长×宽×高。
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:V=abh.教师板书。
5、教学例1.学生独立解决,全班汇报。 三、巩固练习,解决问题
5m
1
5cm
4m
学生口答
2、求微波炉的体积.独立完成,集体订正。 3、口答填表。
4、动手测量求数学书的体积。同桌合作测量计算,集体订正。
5、学校操场上现有15立方米的沙子,准备填入一个长7米,宽3米,深0.8米的长方体坑内,能把坑填平吗?
6、一根长方体的钢材,长是8分米,它的横截面是一个边长为5厘米的正方形。这根钢材的体积是多少立方分米?如果每立方分米钢材重7.8千克,那么这块钢材重多少千克?
7、不规则石头的体积:我们学会了计算长方体的体积,那么你能不能利用我们所学的知识求出这块石头的体积?动脑想一想,同桌讨论。
四、谈收获:这节课你有哪些收获。 五、教师总结:
这节课我们通过动手实验学会了长方体体积的计算,希望同学们平时也能多动手动脑,把我们所学知识用到生活中去,为生活服务。板书设计
长方体的体积=长×宽×高
篇三:长方体的体积教案
《长方体的体积》教学设计 瓜州乡渊泉小学 张梅
教学内容:教科书六年制五年级下册第99~102页。 教学目标:
1.知识与技能目标:使学生掌握长方体体积公式的推导过程,理解长方体体积的计算公式;初步学会计算长方体的体积。
2.过程与方法目标:培养学生实际操作能力,同时发展他们的空间观念。
3.情感态度与价值观目标:在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:在长方体、正方体体积计算公式的探究过程中,理解长方体含体积单位的个数等于长、宽、高的乘积,进而推导出长方体(正方体)体积计算公式。 教学难点:体积公式的推导。
教学准备:1立方厘米小正方块 多媒体课件 学具准备:1立方厘米的小正方体24个 教学过程:
一、创设情境 发现问题
1、(课件出示)字典是我们学习的工具书,必须要常备身边的,聪聪遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)
其实刚才我们在比较他们的什么?(比较它们的体积。)体积指的是什么?(体积是指物体所占空间的大小)
常用的体积单位有那些?(立方厘米,立方分米,立方米) 2、小结:任何物体都占一定的空间大小,也就是说都有一定的体积 二、 观察思考 提出猜想
1、课件出示三个长方体(下列各长方体分割成了体积为1立方厘米的小正方体,请你数出小正方体的个数,并求出长方体的体积。) 2、教师演示,学生独立完成后,指名回答
反馈交流,得出:含有多少个体积单位,它的体积就是多少。
理念依据:通过练习,使学生感知:体积是由体积单位组成的,要求长方体的体积可以用切一切、数一数小方块的方法。这既是对上节课体积单位的复习,也是这节课的教学起点。
3、 师:是不是我们都可以用切一切、数一数小方块的方法来求一个物体的
体积呢?
4、学生讨论 讨论后使学生明确:实际上,在很多情况下,往往不能用切割的方法来求长方体的体积。如:字典、洗衣机的体积、电脑主机的体积等。 理念依据:从实际情况考虑,让学生体会到,要求一个物体的体积,必须有一个新的方法才能解决,激发学生的学习兴趣。)
4、 师引题:这节课我们一起来学习长方体的体积计算(板书课题) 师引导学生动脑思考、大胆猜想。通过刚才的观察,你认为长方体的体积大小可能和什么有关呢?(学生汇报可能与长、宽、高有关) 6、利用课件,验证猜想。动态变化长方体的长、宽、高 师:下面的长方体,什么变了?什么没变?
图(4)
先利用多媒体将上环节使用的图(1)动态变成图(2)
生:长方体的宽和高都不变。长变了,表面积变了,体积也变了。 教师继续把图(2)动态变成图(3)
生:长方体的长不变,高和宽都变了,表面积和体积也变了。 教师也不做评论,再把图(3)变成图(4)
生:长方体的长、宽、高都变了,表面积和体积也变了。
师:通过刚才的观察,你认为长方体的体积大小和什么有关?(长方体的体积和长、宽、高有关)
7、再次猜想
师:通过刚才的观察,我们发现长方体的体积和长、宽、高有关系。你能猜想出它们有怎样的关系?
教师板书学生的猜想:长方体的体积=长×宽×高
[设计意图]通过演示,使学生体会到长方体的体积和长、宽、高都有关系,进而大胆的提出猜想)
三、动手实践、验证猜想 课件出示小组合作要求 1、提出小组合作要求
请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,摆的时
候思考: 1.每排摆了几个?2.每层摆了几排?3.摆了几层?4.一共摆了多少个?你是怎样很快算出总个数?5、你是怎样很快算出总个数的?然后把数字记录在表格里面。 6
、观察每个长方体的“总个数、每排个数、每层排数、层
数”分别与这个长方体的“体积、长、宽、高”有什么关系 ?然后把数字记录在表格里面。
2、小组合作学习
全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论 。 (出示课件:
师:请各小组同学利用你手中的1立方厘米的小正方体,摆成3种长方体,并把有关数据填到表格中,好吗? 生:好!
(小组活动开始,各小组学生分工合作,用体积是1立方厘米的正方体摆出三种长方体,并根据表格要求整理、填写数据。教师巡视指导,了解学生活动情况。) 3、小组派代表汇报
哪个小组愿意先汇报你们的研究过程和成果?
第一组:把12个正方体摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米。
第二组:把15个正方体摆成1排,每排5个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米。
第三组:把24个正方体摆成3排,每排4个,摆2层。这个长方体的长是6厘米,宽是4厘米,高是1厘米,体积是24立方厘米。
师:你观察得非常仔细,解说也非常到位!真是一位小老师!谢谢你! 师:通过这几个小组的拼摆再加上刚才XXX的讲解,同学们有什么新的发现? (学生略感疑惑)
师:我们一起来讨论一下,(结合课件中出示的表格边指边说)摆每个长方体的“总个数、每排个数、每层排数、层数”分别与这个长方体的“体积、长、宽、高”有什么关系吗?同学们可以先和身边的同学讨论一下,然后把你的想法和大家交流。
4、学生进行短暂的讨论后进行了交流。
生1:长方体的体积就是摆这个长方体的小正方体的个数。
生2:我想补充一下。从我们填的表格中就可以看出,每排摆几个,长方体的长就是多少,每层摆几排,它的宽就是多少,一共摆几层,高就是多少。
生3:我发现,只要知道一排摆几个、摆几排、摆几层就能知道长方体的体积了。 师:大家说的不错!如果要想知道一个长方体的体积,我们可以怎么做?
生4:只要知道长方体的长、宽、高就能知道一排摆几个,摆几排,摆几层,就知道体积了。
生5:如果是教室的体积你怎么摆?
师:嗯,你这个问题提得很好,很及时。是呀,难道还要用小正方体去拼摆教室的体积吗? (有学生开始小声地笑,并交流。课堂气氛又一次变得活跃) 师:谁有更切合实际生活的方法?
生6:老师,我觉得根本就不用摆了!只要量出长、宽、高就行了。
师:(疑惑状)什么叫量出长、宽、高就行了?谁听明白了?能结合表中的数据说一说吗? 生7:老师,我明白了!量出长宽高就相当于是知道了一排摆几个,摆几排,摆几层。所以,用长乘宽再乘高就是教室的体积。
师:原来是这样啊!(面向生6)XXX,你同意他的解释吗?大家同意吗? 生:同意!
5、发现总结长方体体积公式
(教师在学生回答时相机将表中“总个数、每排个数、每层排数、层数”下面显示出“体积、长、宽、高及相对应的单位。”)
(1):刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。 师问:每排的个数、每层的排数、层数与长、宽、高有什么关系。
汇报交流:长方体的体积就是摆这个长方体的小正方体的个数。每排摆几个,长方体的长就是多少。每层摆几排,它的宽就是多少。一共摆几层,高就是多少。 (2)教师引导学生发现:小正方体的总个数=每排的个数 ×每层的排数× 层数长方体的体积= 长 × 宽 × 高 学生动笔算一算每一组的长、宽、高相乘的积,算后汇报。
(3)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。
(4)同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
(5)字母表示:长方体体积用V表示,长用a表示,宽用b表示,高用h 表示,长方体的体积公式用字母表示是V=a×b×h=abh 板书:V=a×b×h= abh 学生齐读公式。
6、长方体的体积计算公式的应用----解决课前猜想(算字典的体积) 7、迁移推导出正方体的体积计算公式 再次尝试:一个长方体提问怎样求它的体积。
课件出示:图形变化成正方体提问你能求出它的体积吗?
现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?
学生小组讨论。
哪个同学愿意说说正方体体积的计算公式? 教师追问:你们是怎么想的?
学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。 教师板书:正方体的体积=棱长×棱长×棱长 教师说明用字母表示V=a×a×a = a3 板书:V=a×a×a = a3
教师说明:a3读作a的立方或a的三次方,表示3个a相乘。
本文标签:
[!--temp.ykpl--]