《乘法分配律》的教学片段及反思
问题的探索
1、小组合作,培养估计意识
师:我们先来估计一下他们大约用了多少块瓷砖好吗?
生:思考并回答,只要是学生说的合理就可以
估计的方法很多:估计一行有10块,一共有10行,10×10=100(块)
估计左边有50块,右边有50块,合起来一共有100块。
……
师:那到底谁的估计最合适呢?让我们共同来研究一下好吗?
2、自主探索,验证估计的正确性
师:请同学们用自己喜欢的方式做到练习本上。把你想到的算法都写出来。
先独立思考,然后在小组内交流一下。
生:思考、交流
师:看到刚才同学们积极思考的样子,老师很想知道你们是怎么想的?谁想告诉老师和同学们?
提醒其他学生认真倾听,同时对同伴的回答进行补充。
可能出现的结果:(1)(6+4)×9=10×9=90(块)
(2)6×9+4×9=54+36=90(块)
(3)6×9=54(块)4×9=36(块)54+36=90(块)
学生还有可能出现其它的不同的思考方法,但只要有理由老师都要进行肯定。
学生思考出的算式可以让学生自己写到黑板上,然后老师根据自己的需要边总结边调整出如下的板书:
(1)(6+4)×9=10×9=90(块)
(2)6×9+4×9=54+36=90(块
师:通过计算我们可以看出工人师傅一共贴了90块瓷砖,那谁估计的答案最合适呢?掌声鼓励下自己。
3、分析比较
师:仔细观察两种方法有什么不同
生:第一种方法是先求出一行有多少块,再求一共有多少块;第二种方法是先求出一面墙用了多少块,再求出另一面墙用了多少块,最后求一共用了多少块。
4、结论:
师:我们来比较一下这两个算式的结果如何?
生:相等
师:用什么符号连接(结果相等,用等号连接)
(6+4)×9=6×9+4×9,(板书)
教学反思:本节课的重点和难点是对规律的探索,在得出算式(6+4)×9=6×9+4×9以后,我没有用例子让学生很快的归纳出一个一般的结论,而是引导学生观察、发现、猜想、举例验证、归纳概括等,让学生把静态的知识结论转化成动态的探索对象,使认知任务本身有了一种诱发学生较高思维水平的潜力,给规律的探索过程注入了生命力。
本文标签:
[!--temp.ykpl--]