《积的不变规律》最新教学设计
教学内容:
青岛版小学数学四年级上册42、43页 第1课时
教学目标:
1、学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2、尝试用简洁的语言表达积的变化规律,培养学生初步的概括和表达能力。
3、初步获得探索规律一般方法和经验,发展学生的推理能力。
4、在学习过程中培养学生的探究能力、合作交流能力和归纳总结能力,初步培养学生严谨的治学态度。
教学重难点:
教学重点:引导学生自已发现规律、概括规律,进而运用规律。 教学难点:运用积的变化规律解决问题。
教学准备:课件统计表格
教学过程:
一、创设情境,提出问题
【课件出示:信息窗4情境图 清理海水浴场】青岛是座美丽的城市,在炎炎夏日,青岛的海水浴场每天吸引着数以万计的游客,为了让游客在清洁舒适的沙滩上游玩,筛沙车每天都在忙碌着。
“ 筛沙车每分钟清洁沙滩80平方米”根据图上的这个信息,你能提出什么数学问题?
学生可能提出:5分钟、10分钟、15分钟、30分钟、60分钟·······筛
沙车能清洁多少平方米沙滩?
你们提的问题都非常好!这么多的问题我可以用一个关系式解决,你知道运用哪一个关系式吗?(学生回答)
对,就是“工作效率×工作时间=工作总量”,“每分钟清洁沙滩的面积×筛沙车的工作时间=筛沙车的工作总量”现在我提一个问题“筛沙车的工作总量是怎样变化的呢?”你们能帮我解决吗?
二、自主学习、小组探究
1、填表格(学生每人一张)
学生独立完成表格
2、小组活动
学生在小组内交流自己的发现。
小组活动时,教师巡视、指导。
如果遇到小组观察统计表有困难时,教师引导学生写出计算的算式再观察发现。
80×5=400
80×10=800
80×30=2400
80×60=4800
三、汇报交流、评价质疑
1、全班交流----积随因数扩大而扩大的规律
说一说筛沙车工作总量随着时间的变化是怎样变化的?
学生通过填写的表格从左往右观察或列出的算式从上到下观察
每分钟清洁沙滩的面积不变,工作时间扩大到原来的多少倍,清洁沙滩的总面积就扩大到原来的多少倍。
那如果用因数、因数、积分别表示这三种量,你能用一句话概括你们发现的规律吗?
教师引导学生概括积随因数扩大而扩大的规律:一个因数不变,另一个因数扩大到原来的几倍,积就扩大到原来的几倍。
2、学生探究----积随一个因数缩小而缩小的规律
①、刚才,我们从左往右观察,发现了积随因数扩大而扩大的规律的那从右往左观察表格,用刚才比较研究的方法,比一比,一个因数不变,另一个因数还是乘几吗?积和因数是怎么变化的?你又有什么新的发现? ②、学生独立思考,然后同桌交流。
③、班内交流:
④、概括发现的规律(一个因数不变,另一个因数缩小到原来的几倍,积也缩小到原来的几倍。)
四、抽象概括、总结提升
刚才大家发现的规律是不是有普遍性呢?研究数学问题一般不能轻易下结论,要多举出一些例子,看看会不会出现相同的情况。如果有一个反例子出现,就不能把这种发现当作规律,这就是研究数学问题应该有的严谨态度。下面我们一起来验证规律。
(1) 用积的变化规律填空(课件出示)
2×18=36 20×4=80
4×18=( ) 10×4=( )
8×18=( ) 5×4=( )
(2)学生自己举例说明积的变化规律。
提示:每位同学各写两组算式,一组3个算式,其中一组展现积随一个因数扩大而扩大的变化情况,另一组则展现积随一个因数缩小而缩小的变化情况。
(3)同桌互相检查所举的例子和交流因数和积的变化是否与我们发现的规律相符。
(4)整体概括规律。
既然许许多多的乘法算式中都有这样的积的变化特点,通过验证,发现我们的猜想是正确的。它就是今天我们探究的积的变化规律。(教师板书课题)谁能把这个规律说一说。
小组交流“积的变化规律”
数学讲究语言简洁严谨,谁能用一句话将上面发现的两条规律概括为一条呢?(学生交流)
【课件出示:一个因数不变,另一个因数扩大(或缩小)到原来的多少倍积就扩大(或缩小)到原来的多少倍。】
五、巩固应用、拓展提高
同学们,今天我们共同探究发现了“积的变化规律”,现在让我们运用规律做几道题好吗?
1、基本练习
课本43页第1题
学生独立完成后反馈,交流一下是怎样算的?
2、提高练习
课本43页第2题
学生独立完成后反馈,并说说是怎样想的?
你能根据这组算式的特点接下去再写两道算式吗?
3、开放练习
课本43页第3题
运用“积的变化规律”解决生活中的问题。
本文标签:
[!--temp.ykpl--]