《有理数的乘除法》 教学设计

文章 2019-07-13 07:08:53 1个回答   ()人看过

【教学目标】

1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;

2.能运用法则进行有理数乘法运算;

3.能用乘法解决简单的实际问题.

【对话探索设计】

〖探索1

(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?

(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?

(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?

〖探索2

(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?

(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?

(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化?

〖探索3

(1)2(2)-2(3)2(-3)=___;(4)(-2)(-3)=____;

(5)30=_____;(6)-30=_____.

〖法则归纳

两数相乘,同号得______,异号得_______,并把________相乘.

任何数同0相乘,都得______.

〖旧课复习

1.满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢? 的倒数呢?

2.满足什么条件的两个数互为相反数? 0.2的相反数是多少? 呢?

〖探索4

在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数.

-0.2的倒数是多少?-7.29的倒数呢? - 的倒数呢?

〖练习

P38.练习

〖作业 P45习题1,2,3.

【补充练习】

1. -1的倒数是1还是-1?为什么?

2. 的倒数是______;0的倒数________.

3. _____________的两个数互为相反数._______的两个数互为倒数.

若a+b=0,则a、b互为_____数,若ab=1,则 a、b互为_____数.

4.计算:(1)(-6)4=______=____;

(2) - =_________=_____.

5.在数-5,1,-3,5,-2中任取3个相乘,哪3个数相乘的积最大? 哪3个数相乘的积最小?

1.4.1 有理数的乘法(2)

【教学目标】

1.巩固有理数乘法法则;

2.探索多个有理数相乘时,积的符号的确定方法.

【对话探索设计】

〖探索1

1.下列各式的积为什么是负的?

(1)-2345

(2)2(-3)4(-5)6789(-10).

2.下列各式的积为什么是正的?

(1)(-2)(-3)456

(2)-2345(-6)78(-9)(-10).

〖观察1

P38. 观察

〖思考归纳

几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

(见P38.思考)

与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值

〖例题学习

P39.例3

〖观察2

P39. 观察

〖练习

P39.练习

〖作业

P46.7.(1),(2)(3),8,9,10,11.

〖补充练习

1.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?

(2)a与2a哪个大?

(3)判断:9a一定大于2a;

(4)判断:9a一定不小于2a.

(5)判断:9a有可能小于2a.

2.几个数相乘,积的符号由负因数的个数决定 这句话错在哪里?

3.若ab,则acbc吗?为什么?请举例说明.

4.若mn=0,那么一定有( )

(A)m=n=0.(B)m=0,n0.(C)m0,n=0.(D)m、n中至少有一个为0.

5.利用乘法法则完成下表,你能发现什么规律?

3 2 1 0 -1 -2 -3

3 9 6 3 0 -3

2 6 2 2

1 3 2 1

-1

-2

-3

6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?

(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?

1.4.1 有理数的乘法(3)

【教学目标】

1.熟练有理数乘法法则;

2.探索运用乘法运算律简化运算.

【对话探索设计】

〖探索1

你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?

〖阅读理解

乘法交换律和结合律(见P40)

〖探索2

下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?

(1)252004 (2) - 1999 .

〖探索3

运用运算律真的能节省时间吗?分两个大组,比一比:

计算 (-198)( ).

〖练习1

运用乘法交换律和结合律简化运算:

(1)1999125 (2) -1097 ( ).

〖探索4

1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?

2.如右图,你会用两种方法求长方形ABCD的面积吗?

〖阅读理解

(乘法对加法的)分配律(见P41)

〖例题学习

P41.例5

〖作业

P41.练习

〖补充作业

1.计算(注意运用分配律简化运算):

(1)-6(100- ); (2) (-12).

3.下列各式的积是正的还是负的?为什么?

(1) 2(-3)(-4)56789(-10);

(2)2(-3)4(-5)(-6)789(-10);

(3) 2(-3)4(-5)(-6)0789(-10);

4.下列各式的积(幂)是正的还是负的?为什么?

(1)(-3)(-3)(-3)(-3)

(2) ;

*(3) .

5.运用乘法交换律和结合律简化运算:

(1)-98 (-0.6); (2)-1999 (- ) ( )

【补充练习】

1.某地气象统计资料表明,高度每增加1000米,气温就降低大约6℃.现在地面气温是37℃,则在10000米的高空的气温是多少?

2.运用分配律化简下列的式子:

(1)例3x+9x+x (2)13x-20x+5x;

=(3+9+1)x

=13x;

(3)12-9 (4)-z-7z-8z.

3.如右图,用两种方法表示长方形ABCD的面积.

4.〖议一议如图,正方形ABCD的边长为(a+b),小明认为它的面积可以记为 ;小芳发现它的面积还可以记为 ;小勇进一步得出结论:无论a、b为何值,式子 = 总是成立的.你认为他们的看法正确吗?为什么?

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: