数学《平行四边形的面积》教学反思
按昨天学习的体会我在自己班里实践了一下,课堂上收获了惊喜与平淡,现记录如下。
1、准备学习材料,有点小困难。
课前准备,我都会考虑材料尽可能简单,但效益要达到最大化。本节课就给学生准备一个平行四边行,供学生探究用。
在word上画平行四边形时,遇到了困难。底与高都要取厘米数的平行四边形我不知道怎么设置,急中生智,用了一条参考线段就完成了。但邻边就没办法了,结果做出来的邻边长2。3厘米。不过这样的学习材料并不影响学生的研究。
2、尝试也出现三种思路。
课始,我开门见山就让孩子们量出平行四边形的相关数据,计算平行四边形的面积。(边指周长与面积的环节都省了,这个环节有必要吗?)大部分学生能按自己的理解进行测量并计算,十来名学生三分钟的探究不知道如何下手。这是我始料未及的,课前的准备还是不太充分。下次是不是给那些没办法研究的小朋友准备个研究提示?提示该怎么提示才有效?提示会不会影响那些本来有自己研究思路的学生的思路?或者会不会呈现的材料不够丰富?……有太多的疑问了。
我的课堂上也出现了三种解决平行四边形的面积的思路。
方法一:求周长。
方法二:底乘邻边;
方法三,底乘高。
讲评时,我先展示求周长的思路,学生一看就知道这是不对的。再出示底乘邻边的方法,安琦说:“因为长方形是特殊的平行四边形,长方形面积是长乘宽,所以平行四边形也是长乘宽”。居然与案例呈现的孩子回答的一模一样,难道这是孩子们应然出现的思路吗?当我出示教具把平行四边形拉成长方形时,绝大多数的孩子都赞同了这种方法。“把平行四边形拉成长方形,面积没变化吗?”我急着抛出研究的关键点。连续问了三遍,等了一分钟,终于有人举手了。侠宋上台把原来的平行四边形进行害虫补成长方形,跟拉成的长方形一比较,孩子们这才发现,把平行四边形拉成长方形,面积变大了。第三种方法的得出极其自然。真佩服名师,这个环节的设计,割补法应然而出,不过既是为了验证“拉”的方法的不正确,又为正确方法埋了伏笔,高!
3、基本练习。
我采用了两道题,一道只呈现对应底和高的平行四边形,一道有多余邻边的平行四边形,结果还是有人掉进陷阱。是不是太早出现干扰因素了?如果第二课时再出现这个,会不会好一点儿?
4、变式练习。
画面积是12平方厘米的平行四边形,孩子们觉得有些简单。怎样把这个环节设计精彩,成为本堂课的第二个高潮点?有待下次继续思考。
5、课尾。
我也采用了朱老师的那三道题,“一个底是8米,高是6分米的平行四边形,面积是多少?”“把它分成两个大小一样的三角形,一个三角形的面积是多少?”“把它分成两个大小一样的梯形,一个梯形的面积是多少?”就让学生答吧,处理有些简单,继续深入,会不会扯得太多?学生一开始力挺的底乘邻边的方法,是不是在这时给个回就比较好?
遗憾与惊喜并存,上课,真有意思!
本文标签:
[!--temp.ykpl--]