《列方程解决实际问题》六年级上册教学反思
六年级数学(上册)的第一单元就是在学生五年级学过的解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:
一.重视关键句分析训练,提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:大雁塔的高度比小雁塔高度的2倍少22米,根据这句话学生的思维就会直觉的写出这样的相等关系:大雁塔的高度=小雁塔的高度2-22。如果小雁塔的高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的一个数比另一个数的几倍多几(或少几)的实际问题,学生就会根据自己的理解和直觉思考用一个数=另一个数倍数几这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
二.重视学生的语言训练,提高学生的表达能力。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。[+小学教学 设 计 网_www.xxJXSJ.cn=}{
在教学例2时我通过出示学生熟悉的生活素材:六(1)班有学生48人,男生是女生人数的1.4倍。让学生独立思考和讨论找出题目中的相等关系,学生根据全班48人,知道用男生人数+女生人数=全班人数的相等关系,再结合男生是女生人数的1.4倍。把题目中的女生人数看做1倍数,那么男生人数就是1.4倍数,如果用x表示女生人数,那么男生人数就是1.4x,这样方程就很快列出来:1.4x+x=48;
如果把第一个条件改成合唱组男生比女生多48人。又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。
通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。
三.重视学生的综合训练,提高学生的整体思维。
在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。
在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2.5倍,如果梨是x 千克,那么苹果和梨一共有( )千克,苹果比梨多( )千克,梨比苹果少( )千克,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。这样基础题目通过改编成以下的题目:合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。
教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。
本文标签:
[!--temp.ykpl--]