四轮驱动四轮转向的汽车电子差速转向控制论文

文章 2019-07-12 04:59:58 1个回答   ()人看过

论文摘要:通过汽车转向时稳定性分析阐明了四轮转向的优点。而鉴于轮毂电机在电动汽车上应用的诸多优点,及其功率受结构体积的限制,轮毂电机的应用将使汽车由性能更好的四轮驱动替代两轮驱动,它不但充分利用了地面对车轮的附着力和驱动力,而且结合用直线步进电机控制转向力的汽车转向系统,能更容易地实现全面改善转向性能的四轮转向系统。由于四轮驱动4WD与四轮转向4WS相结合的电子差速计算理论还有待完善,通过对轮毂电机运行的电子差速转向控制原理分析和数学推导,提出了4WD-4WS相结合的逆、同相控制模式的差速计算公式及四轮毂电机驱动结合四轮转向的电子差速实施结构原理。

论文关键词:四轮驱动,四轮转向,电子差速,转向控制

一、汽车转向时稳定性分析和四轮转向优点

如图1所示为汽车转弯时所产生侧偏角的关系示意图,其中α为前轮侧偏角;α为后轮侧偏角;α为汽车重心位置侧偏角。汽车转向时,除在极低速时,一般情况下车轮平面与汽车行进速度方向并不一致,两者之间的角度值即为侧偏角α。在汽车转弯时,由于离心力的作用,垂直于车轮平面的车轮中心上有侧向力,相应地在地面上产生的反作用力就是侧偏力。由于车轮侧向产生弹性变形,变形车轮的滚动方向与车轮平面方向并不一致,侧偏力又分解为与车轮行进方向平行的滚动阻力和与行进方向垂直的转弯力。在地面附着极限内,转弯时路面反作用力的大小与方向随着侧偏角的大小发生变化,因而汽车的转向直径也随之变化。

通常车轮转向时,路面对各车轮转弯时的反作用合力与汽车圆周运动的离心力相平衡。一旦正在转弯的汽车速度提高,离心力就随之增加,质心位置的侧偏角必然增大而随之出现不足转向(如图1b所示)。此时若要保证前轮按原转弯半径运动,与低车速时相比,前轮必须向内侧多转过一定角度。换言之,汽车以相同转弯半径运动时,随着车速的增加,对于常规的前两轮转向(2WS)系统驾驶员就需相应增加转向盘转角;或者使后车轴产生一个向外则运动的力,以增加转弯时路面的反作用力,使其与离心力平衡。为了使汽车重心位置的侧偏角度α(汽车重心的速度方向与汽车纵向轴线之间的角度)为零,若能让后轮也向转弯内侧偏转相应角度,则就可使具有侧偏角的后轮行进方向也与转向圆一致。亦就是在高速行驶转弯时,要求后轮应具有与前轮同向的转向角度,即可减小车身的横摆角速度和侧倾角,避免汽车发生侧滑、倾翻现象,以确保高速转向时的稳定性。

四轮转向(4WS,4WheelsSteering)系统是指汽车的前、后四轮都具有相应的转向功能,后轮与前轮同方向转向称为同相控制模式,后轮与前轮反方向转向称为逆相控制模式。主要功能是有效控制车辆的横向运动特性。它是现代轿车采用的一项提高汽车操纵稳定性、操纵轻便性和机动性的关键技术措施,与两轮转向(2WS)系统相比具有如下优点:

1)改善高速转向或在侧向风力作用时的行驶稳定性。在中高速行驶时采用前、后轮同方向转向的同相控制模式,有助于减小车辆侧滑或扭摆,对平衡车辆在超车、变道、或躲避不平路面时的反应均具有帮助,也提高了车辆直线行驶的操纵稳定性。随着高速、高架公路的出现以及现代轿车高速行驶的发展,高档轿车采用四轮转向系统将成一种趋势。

2)减小低速转弯半径,改善其操纵轻便性和提高机动性。在低速行驶时采用前、后轮反方向转向的逆相控制模式,可使车辆转弯半径大大减小,参考后述图2所示分析,4WS的转弯半径最多可比2WS减小一半,这对低速选位停车,窄道转向行驶都将带来极大的方便。

3)提高转向响应的快速性,全面改善车辆的转向性能。不仅使车辆在高速行驶或湿滑路面上的转向性能稳定,且对转向输入的响应更迅速而准确。

二、轮毂电机应用与四轮驱动及电子差速的关系

鉴于轮毂电机在电动汽车上应用的诸多优点。但由于轮毂电机受轮毂内结构体积限制,按汽车驱动功率要求批量生产大功率轮毂电机有相应难度,而采用四轮驱动即可实现小马拉大车,通过四轮毂电机并联驱动即可比二轮毂电机驱动提高汽车总驱动力1倍。并根据汽车理论分析只有四轮驱动才能充分利用车重产生的地面附着力,以此提高汽车行驶的稳定性及车辆越野通过性。随着汽车材料技术的发展,需采用轻型材料来减轻车载自重,减小能耗,提高功效;并随着汽车高速行驶技术发展,对提高汽车行驶稳定性等性能指标将提出更高要求。因此也更需采用四轮毂电机驱动来提高汽车对地面的附着力。又由于只有驱动轮才能实现制动能量的回收,采用四轮毂电机驱动并结合兼有电动、发电回馈和电磁制动多功能的电动汽车轮毂电机技术,即可极大地提高汽车在降速制动和下坡时对动能能量的回收,以节能和提高续驶里程。所以轮毂电机的应用将使电动汽车由性能更好的四轮驱动替代两轮驱动。

为满足驱动轮差速要求有采用机械差速和电子差速两种。机械差速是传统汽车普遍采用的方法,其机构庞大而复杂。而电子差速系统EDS是采用电子控制的方式来实现,有诸多优点,它与轮毂电机的应用如同一对比翼鸳鸯,即左右侧驱动轮采用轮毂电机必须通过电子差速来控制,而轮毂电机的应用又使电子差速控制变得很容易。

综上所述汽车采用四轮驱动结合四轮转向将具有诸多优点,尤其对于电动汽车采用轮毂电机驱动来说,与传统汽车相比使汽车实现四轮驱动方式变得很容易。而且结合用直线步进电机控制转向力的汽车转向系统,能更容易地实现全面改善转向性能的四轮转向系统。而现有汽车仅采用四轮驱动或四轮转向的单一方式其结构都相当复杂,而由两者相结合的方式至今还没有,更没有同时采用电子差速转向控制等多项技术相组合的实施方案。虽有报道四轮驱动采用常规二轮转向的电子差速转向控制技术。但随着汽车控制技术发展及其性能要求的提高,特别是电动汽车采用轮毂电机技术的成熟,电动汽车用四轮毂电机驱动实现四轮转向的电子差速转向控制系统技术也将被要求得以解决。并且四轮毂电机驱动实现四轮转向将极大地提高电动汽车的性价比,也能较容易地实施其他各种性能优化措施,以减少交通事故和提高道路通行能力。

三、四轮驱动结合四轮转向的电子差速计算式推导

电子差速系统(EDS,ElectronicDifferentialSystem)是采用电子控制方式来实现内外侧驱动轮差速要求。而其实施首先需要一套正确易算的差速计算公式。通过对四轮驱动4WD与四轮转向4WS相结合的运行机理分析,在此提出仅利用中学的三角函数结合比例法数学工具来推导出其4WD-4WS的逆、同相控制模式的差速计算公式。如图2所示为4WD-4WS逆相控制的差速计算原理图。如图3所示为4WD-4WS同相控制差速计算原理图,图中L为汽车轴距,B为汽车轮距,α、β、α、β分别为前外侧、前内侧、后外侧、后内侧转向轮的偏转角,n为前驱动轮兼外侧转向轮转速,n为前驱动轮兼内侧转向轮转速,n为后驱动轮兼外侧转向轮转速,n为后驱动轮兼内侧转向轮转速。另外,为分析推导需要特引进2个临时借用参量l与r,其含义参见图中所标注的尺寸位置,即l为转弯圆心o到前车轮轴心的车身纵向距离,r为转弯圆心o到内侧车轮中心的车身横向距离。为保证汽车转弯时各车轮只滚动无滑动,要求四个车轮均绕同一个圆心o转动,即每个车轮的轴线交于同一点,因此各车轮转弯的圆弧轨迹分别为如图中所示的虚线,各车轮转弯的圆弧半径分别为R、R、R、R。根据车轮转速应与其转弯的圆弧半径成正比关系,即有n/n=R/R、n/n=R/R、n/n=R/R。若设n为参考标定转速,它与加速踏板指令汽车的车速n一致,也是四只车轮中最高的转速,分析图示几何关系即可获得其它三只车轮转速相对标定转速n的计算式,且经推导后发现逆相控制模式与同相控制模式的差速计算公式完全相同,即其他三只车轮转速n、n、n相对标定转速n的差速计算公式分别为:

从推导过程中还可发现同、逆相控制模式中的两个重要特征:

(1)参考图2所示,在四轮转向逆相控制模式中当前后轮转向角相等(α=α,β=β)时,其转弯半径为最小。并且它与常规的前二轮转向系统2WS相比,在转向轮转向角相同的前提下,其转弯半径可减小一半。这利用比例作图法即可证明,其最小转弯半径时的圆心点位于如图2中的黑点所示,此时l=L/2,并且前后轮的转弯圆弧轨迹重合,即前后圆弧半径相等(R=R、R=R)。所以采用四轮转向4WS系统逆相控制模式时,同时使前后轮偏转角达到最大值可将转弯半径大大缩小,这对低速选位停车,窄道转向行驶都会带来极大方便。但对于现已有的电控液压式或电控电动式两种四轮转向系统由于受其结构限制,其后轮转向角还较难以做大,而采用基于直线步进电机控制转向力的汽车转向系统技术就不会受其限制。

(2)在四轮转向同相控制模式中按图3所示分析,假若使前后轮转向角相同(α=α也β=β),其四车轮中心到圆心点o的直线变为相互平行,即圆心点o将为无限远,其转弯半径变为无穷大,即圆弧轨迹变为一条直线。所以在实际应用中对四轮转向系统4WS的同相控制模式的后轮偏转角有一限定值,一般不大于5。

四、电子差速转向实施的结构原理

电子差速转向的实施主要是在其相应的微机控制系统ECU中增加一套差速计算程序,并与相应的转向机构配合,根据转向机构中各车轮的偏转角信号、车速信号及控制模式,按前述相应的差速计算公式计算出对各车轮转速的要求值,输入到各车轮轮毂电机的驱动控制器中作为其速度指令值。按控制精度要求可以是开环或闭环。对于精度要求低的开环系统,几乎不需要增加硬件成本。而对于闭环系统有些传感器也可与轮毂电机控制器及相应转向机构的传感器兼用。如图4所示为电子差速转向实施的结构原理框图。方向盘的转角信号、加速踏板及制动踏板的加减速信号、转向机构中各车轮的偏转角信号以及各车轮轮毂电机的转角信号输入微机控制ECU系统。轮毂电机转子(对于磁阻电机和永磁无刷电机本身就具有转子转角位置传感器)的转角位置信号通过对时间t的微分,即可得到电机的转速信号,再按轮胎直径就可获得各车轮的线速度。根据上述各信号,ECU系统就可按既定的控制策略和差速计算公式由微机内的差速运算器计算出对各车轮速度的要求值n、n、n、n,作为对各车轮轮毂电机的速度指令,送入相应的电机驱动控制器进行调速控制。

对于四轮转向4WS系统控制策略,即是根据车速、转向要求及其特征确定何时应采用逆相控制模式,何时又需采用同相控制模式,并确定后轮转向角与前轮转向角间的比例关系。现已报道的四轮转向4WS系统控制策略主要有转角比-车速控制型、比例于横摆角速度的后轮转向控制型、质心侧偏角为零的后轮转向控制型等,它们是指控制前后车轮的相对转向及其转角比分别按车速、车身横摆角速度、质心侧偏角等稳定性因素要求以一定控制算法而变化的一种控制规律,其控制策略不同所需采用的传感器及其技术要求也不同。由于四轮转向4WS技术还处于发展成熟中,其控制策略的算法理论也有待进一步发展完善。为简单清楚说明起见,在此以目前用得较多也为较简单的转角比-车速控制型为例说明如下:

图5为转角比-车速控制型所采用的前后轮转角比与其车速的控制关系曲线图。它首先划定一个同、逆相控制的界限,一般定为车速35km/h,也就是说在车速低于35km/h时采用逆相控制模式,当车速高于35km/h时采用同相控制模式。根据上述同、逆相控制模式的两个重要特征中已表明同相控制时其转角比还不能较大,一般限定后轮同相转向角不大于5。所以对于通常汽车前轮转角最大值定为:内侧3955′士2,外侧为3500′士2时,其同相转角比定为不大于1/8。而对于逆相转角比为了减小低速转弯半径可适当放大。

参考文献

1 王贵明、王金懿编著.电动汽车及其性能优化[M].北京:机械工业出版社,2010.5

2 余志生主编.汽车理论[M].北京:机械工业出版社,2006.5第四版

3 王贵明、王金懿.兼有电动、发电回馈和电磁制动功能的可调速旋转电机:中国,ZL2.5[P]

4 王贵明、王金懿.基于直线电动机控制转向力的汽车转向系统:中国,2.7[P]

5 万钢等.四轮电子差速转向控制系统:中国,ZL02136498.2[P]

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: