《一元二次方程》的数学教学反思
一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于的它的概念,学生很容易理解。这里我通过两个实际问题,一个是求长方形的面积问题,另一个增长率问题,让学生经历了二次项的产生过程,之后让学生来归纳出一元二次方程的三个特点①只有一个未知数;②未知数的最高次数是2次③方程两边都是整式。那么针对一元二次方程概念的练习,如若关于x的方程(m+1)x|m|+1-2x+3m=0是一元二次方程,求m的值,学生的出错率也不低;如果再问m为何值时这个方程是一元一次方程,正确率就会很低,所以可以说学生对此类考察方程概念的题型掌握得还不是很好。本节的第二个知识点就是一元二次方程的一般形式,学生在理解起来是比较容易的,但在练习中也会有不少学生会把二次项和一次项位置写反掉,或是在写系数时没有带上符号。本节的第三个知识点就是一元二次方程根的概念,课件上关于这个知识点设置了两个练习:练习1:判断未知数的值x=-1,x=0,x=2是不是方程x2-2=x的根?
练习2:已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值。对于这两个练习学生在课堂上都回答得很快,但在课后的作业中发现了一个非常严重的问题,就是学生他知道要用“代入检验法”来判断一个值是不是方程的根,但对于如何书写这个判断过程却没有任何思绪,以致于在作业中很多的同学或是直接下结论或是在判断时都没有分开“左边=”“右边=”,这块书写的过程是我教学的一个疏忽,所以很多学生没有掌握。此外,对于“一元二次方程的根”这个知识还有一类这样的提高题,如:已知一元二次方程ax2+bx+c=0,若满足a+b+c=0,4a-2b+c=0你能通过观察知道这个方程的根吗?实际上这类题目中有着一种逆向的思维,所以学生不是很容易理解和掌握。
本文标签:
[!--temp.ykpl--]