八年级数学下册《勾股定理》的教学反思
在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师再利用电脑演示直角三角形中勾股定理的探索过程。反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的解决问题的能力和创新能力。学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。
在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。
最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。
数学有与其他学科不同的特点,自然科学常发生新理论代替旧理论的情形,但数学不会如此。数学学习是数学发展史的缩影,是一个累进过程。勾股定理是人类几千年的文化遗产,是经典的定理,拥有科学简洁的数学语言。而数学教学的核心不是知识本身,而是数学的思维方式。认识是个人独特的构造结果,人的思维活动有强烈的个性特征。每个学生都有自己的生活背景、家庭环境,这种特定的文化氛围,导致不同的学生有不同的思维方式和解决问题的策略。学生已有丰富的数学活动经验,特别是运用数学解决问题的策略。学生只有用自己创造与体验的方法来学习数学,才能真正地掌握数学。因而数学教学要展现数学的思维过程,要学生领会和实现数学化,自己去“发现”结果。这一课的学习就主要通过让学生自主地探索知识,从而将其转化为自己的,真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。
本文标签:
[!--temp.ykpl--]