《解方程解决稍复杂的百分数实际问题》教学反思范文
学生从五年级就开始接触简易方程,经历一年多的学习对于方程有了一定的认识,然而为何要设单位“1”的量为未知数这个问题在列方程解决稍复杂的分数实际问题时就一直困扰着学生。列方程解决稍复杂的百分数实际问题是小学阶段的最后一个有关方程学习的单元,因此有必要从本质上去拨开学生心中为何要设单位“1”的量为未知数的那团云。正好借助这节课通过对比分析的方法帮助学生很好的解决这个困惑。
案例描述:苏教版数学六年级下册教材
教材例5:朝阳小学美术组有36人,女生人数是男生人数的80%。美术组男生、女生各多少人?
学生能很快根据题目条件进行相关的找单位“1”分析数量关系的解题前期准备,经历这这两步后学生通过已有经验可以很快确定用方程的策略来解决这个问题。
在教学的过程中,笔者故意提出:这里男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?学生在底下开始异口同声地回答设单位“1”的量也就是男生人数为未知数比较合理。设美术组有男生X人,女生就有80%X人。那么根据等量关系式:男人人数+女生人数=36学生很自然地列出方程
X+80%X=36。就在大家十分“得意”的时候,一个小男孩发表了自己不同的意见:“也可以把女生人数设为X。”刚开始很多同学觉得有点不可思议,以前做这类问题不都是将男生人数(单位“1”)设为未知数X的吗?抓住这个千载难逢的机会,我就让他说说他是怎么想的。他是这么说的:设女生人数是X人,男生人数是X÷80%人,根据等量关系式:男人人数+女生人数=36列出方程:X+X÷80%=36。听完他精彩的发言,大家恍然大悟,原来还可以这样?
仔细回想这个聪明男孩的问题,原来数学真的需要动脑。这个问题在学习分数除法之前教材是一直在回避的,到了这里我灵机一动将题目改成:教材例5:朝阳小学美术组有36人,女生人数是男生人数的2倍。美术组男生、女生各多少人?那你觉得这个问题我们以前是怎么解决的?学生很自然的想到把一份数男生人数设为X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人数设为X人呢?学生思考了一会列出:X+X÷2=36,这个方程没有学习分数除法之前学生是没有办法解出来的,可能这就是教材一直回避的重要原因吧。但是学生学习了分数除法,理解了分数和百分数的意义之后凭借自己的理解列出超乎常规的方程的勇气是值得肯定的。经过这两个问题的对比,学生明白了设未知量也是很重要的。课上到这里,并不是去推翻学生已有的经验,而是让学生有这样一种意识:数学很多时候不是一种硬性规定,遇到这类问题只能设单位“1”的量为未知数。于是我顺水推舟让学生比较了这两个方程:X+80%X=36、X+X÷80%=36哪一个解起来不较容易?学生通过计算终于明白:X+80%X=36方程的优越性,于是又回到了:男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?通过这样的对比进一步让学生体验到了:设男生人有X人(单位“1”的量为未知数的)合理性,不仅仅能很快表示出女生80%X人,而且X+80%X=36是学生熟悉的形如:aX+bX=c(这里a,b,c已知),而X+X÷80%=36这个方程不是学生熟悉的类型,是需要学生根据除法将它转化为aX+bX=c,这一步转化至关重要。经过上述的两次对比学生终于明白了:为什么在设未知量的时候一般要把单位“1”的量设为未知数了。有了这样的深刻的体验,学生解决这类问题就十分自然,心中的困惑可能就会烟消云散。
本文标签:
[!--temp.ykpl--]