关于绝对值的教学反思整理

文章 2019-07-11 03:08:50 1个回答   ()人看过

反思一

对七年级学生来说,绝对值这个名词既陌生,又是一个不易理解的数学术语。本节课是这一章的重点内容,同时也是一个难点内容。教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义,即一个数a的绝对值就是数轴上表示数a的点与原点的距离。这样一来把数轴的概念、画法、利用数轴比较两个数的大小以及绝对值等知识联系在一起了。

本节课内容分为三部分,绝对值的意义、绝对值的表示方法、比较两个数的绝对值的大小,难点在于绝对值概念的理解。数学家华罗庚指出:“数缺形时少直观,形缺数时难入微。”在数学教学过程中,要千方百计教给学生探索方法、获得知识的形成过程,掌握更多的数学思想、方法,做到形数兼备、数形结合。于是,在与学生共同探讨本节课的知识的同时,要注重数学思想方法的渗透:数形结合的思想方法,这样学生易于理解。

首先,用10分钟的时间自学教材上的内容,同时完成教材上的随堂练习,这样既能培养学生的自学能力,又突出了学生的主体地位。利用学生熟悉的情境导入新课,两辆汽车都从千口出发,分别向东、西方向行驶5km,到达吕村、韩张两地,(1)它们行驶的路线相同吗? (2)他们行驶的远近相同吗?

学生讨论,思考回答

(1)它们行驶的路线相同;(2)它们行驶的远近相同,即它们距离原点的距离相同,由此自然而然地引出课题:绝对值。从实际问题情境中抽象出数学问题,进而很自然的得出绝对值的几何意义,即一个数a的绝对值就是数轴上表示数a的点与原点的距离。这一情景实质上是将实际问题数学化,直观性强,学生易于理解,也实现了《课标》要求的数学教学要生活化,数学教学与生活紧密联系。

本节课注重学生稳扎稳打的训练学生的审题、解题能力每学一个知识点,紧跟相应的数学练习,从而达到良好的教学效果。

为了激发学生学习数学的积极性,为了有效避免数学课堂的枯燥无味,我设置了一系列活动,如:尝试回答:

(1)︱+2︱= ,︱ ︱= ,︱+8.2︱= ;

(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;

(3)︱0︱= 。(幻灯片)

说数小游戏:学生同桌之间一人说数,另一人说这个数的绝对值等。然后小组讨论:你能从上述数学活动中发现什么规律?让学生在玩中学,学中玩,这样既能活跃身心,又掌握了知识点,也突破了难点。从而得到绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。这样设计是为了让学生经历数学知识的形成过程,体现学生是学习的主人,老师是课堂的组织者、引领人和学生学习的伙伴。

学生对绝对值有了一定认识后,我安排了七道不同层次的习题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。

对于这几道针对性思考练习,我完全放手让学生自主进行,学生通过独立思考,合作交流,到讲台板演等,充分暴露学生的思维过程,我根据学生情况,适时给予指导,达到了较好的效果。

通过这节课的教学,我也有一些感想。面对七年级的学生,我觉得有很非常熟悉的知识,可以有不同的说话方式,要让学生学会择优,教师先学会择优,选择学生易于理解的方式说出来,并且要保证思路清晰。整个新知识的处理,要一气呵成,让学生在环环相扣的状态下,形成网络知识结构。当所有的内容已经做到胸有成竹的时候,再来与学生共同与学生研讨,可做到深入浅出,教师教得轻松,学生学得愉快、轻松,心里就有一种成就感,学生

也能体验成功的愉悦,三维目标也能顺利达成。

反思二

对初一新生来说,绝对值是一个很难理解的数学术语。

本节课我首先复习相反数的知识,从一对相反数在数轴上的位置,自然引出它们距离原点相等。接着举例:出租车从车站出发,向南行了10千米,又从车站出发向北行了5千米。如果用正负数表示两次运行的情况,需要先规定一个正方向,假设向北为正,则分别是-10千米和+5千米。可是要想知道这两次运行中,出租车一共用了多少油,与方向还有关系吗?该与什么有关呢?面对这些问题,学生纷纷说出,只与从出发点到目的地的距离有关。对。我及时给予鼓励,并在黑板上板书“距离”二字。

然后又引导他们想象,把出租车的路线看成一条数轴,对照黑板上的数轴,理解“距离”的涵义。并举例

(1) 3 到原点的距离是3个单位长度。

(2)-3 到原点的距离是3个单位长度。

这时,我问学生,“这句话文字太多,想不想简化一下?学生齐答“想”!

“好,那么用三个字就可以代替这句话。”有的学生已经小声说出了,是“绝对值”。 于是板书课题——绝对值

接下来又问,“写这三个字也有点麻烦,想不想再简化一下?”

“想”,我看到学生已经笑了,好像这是很好玩的事,越来越简单了。于是我又及时给出符号“| |”的写法。

到此时,学生已经明白“绝对值”就是“一个数到原点的距离”。学生自己总结出来了。 为了讲清绝对值的意义,我设计了循序渐进的几个例子

(1)|-5|= (2)|7|= (3)|-1/3|= (4)|0|=

当学生说出以上四个式子的结果后,又出示了第五个(5) |a|=

很多学生没有思考马上就答出“等于a"。

针对学生的回答,我问“上节课,在学习相反数的时候,我告诉大家,字母可以表示哪些数?”

学生立即回答,“任意有理数”。那么这里的a也应该是任意有理数。

在此基础上,我引导学生得出|a|的三种情况。尤其当a<0时,|a|=-a,让学生明白,字母a中包含着一个看不见的“-”号。-a实际上是a的相反数,也是一个正数。

就这样,在我的预谋中,学生自然的明白了绝对值的意义,并学会了化简绝对值的符号,也理解了非负数的含义。

再次面对初一的新生,我觉得很多非常熟悉的知识,可以用不同的说法让学生理解,而且,教师一定要思路清晰。整个新知识的处理,要一气呵成,让学生在环环相扣的紧张状态中,形成知识系统,直到讲完新课.

当所有的内容已经胸有成竹的时候,再来教给学生,竟然可以深入浅出,四两拔千斤,尤其当你启发点拨的到位,学生水到渠成的自己得出你想要讲解的新课时,心里会有一种成就感,当然学生在不知不觉中自己掌握了新知识的主要内容,他们也不会觉得难以接受。

本节课通过多媒体展示,并创设现实的情景问题,让学生在极其轻松的氛围中,通过交流讨论,探索绝对值规律,学会求解一些简单的绝对值问题,使学生对数学产生一定的兴趣和求知欲望。让学生通过数一数、试一试、做一做等练习,给学生恰当的思考空间,让学生更好的自主学习。

通过对本节的反思,发现还存在许多问题:教学过程中过多地注意结论的得出,忽视过程的分析和总结;只注意结论的得出,忽视结论的应用;只注意理论的建立忽视尝试运用于解决实际问题;整个过程多媒体展示比较多,忽视学生的参与性与主体性;为此,我自认为本节课学生的热情很高,但积极调动的不高;课堂气氛活跃,但是不够热情;学生参与性增强,但是动手能力减弱。所以,要真正使一节课完美,还需要认真分析和发现学生的真正需求,怎样能够使学生积极地参与到整个教学过程中,是上好一节课的标准。

总而言之,把学生放在课堂的主体,才是上好课的保证。在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: