三角形的面积教学设计范本

文章 2019-07-10 22:41:36 1个回答   ()人看过

篇一:三角形的面积教学设计

三角形的面积教学设计

教学目标

1.推导三角形的面积公式,沟通长方形、正方形、平行四边形和三角形的内在联系。

2.进一步学习用转化的思想方法解决新的问题。

3.理解三角形的面积与形状无关、与底和高有关,并会运用面积公式求三角形的面积。

课前准备

课件、学具(完全相等的锐角、钝角、直角三角形各一对,任意三角形三个)。

课前分工:每个小组选出一名小组长,实验过程中协调小组内的活动;再选一名记录员,详细记录小组内实验中的每个细节和得到的结论;还得选一名发言人,代表小组汇报结论;最后选一名噪音控制者,控制小组的声音不能过大,以免影响别人。

教学流程

一、创设情境、导入。

师:昨天下午,老师接到了一个任务,想请咱们班的同学帮我一起解决,你们愿意吗?再过1个多月就到元旦了,我们学校过元旦的时候要吸收100名同学入队,(电脑出示:闪动的红领巾)需要做100条红领巾,需要买多少布料?(电脑出示:需要买多少布料?)必须知道什么?

生:必须知道一条红领巾的大小。

师:对,也就是要知道一条红领巾的面积。你们看看红领巾是什么形状的?

生:三角形。

师:三角形面积的计算方法,我们还没有接触过,这节课我们就一起来学习研究三角形的面积。(板书:三角形的面积)

二、新授。

1.复习。

师:回忆一下,平行四边形面积的计算方法是怎么推导的?

生:(略)

师:大家对平行四边形的面积公式的推导掌握得不错(电脑出示:

(1)转化成已学会的求面积计算的图形。(2)找到它们之间的联系,推导出面积计算的公式。)

师:我们先把平行四边形转化成已学会的计算面积的图形长方形,然后找到平行四边形与长方形之间的联系,推导出了平行四边形的面积计算公式。我们能不能依照平行四边形面积公式推导的方法,试着解决三角形面积计算的方法呢?

生:能。

2.第一次操作实践。

师:好,我们先来试试三角形能不能转化成我们已学会的计算面积的图形,以四人小组为单位进行实验。好,开始。

学生实验,教师参与到小组中进行指导。

师:三角形能不能转化成我们已学会的计算面积的图形呢?

生:能。

师:那你们是怎么转化的?哪个小组上来说说,他们汇报的时候,其他小组要注意听,听听他们的结果与你们的有什么不同,如果你有疑问可以向他们提出。

生:我们用两个直角三角形拼成一个长方形。

师:我这儿也有两个直角三角形,可是拼不成,你用的是两个什么样的三角形?(教师操作。)

生:我们用的是两个完全一样的三角形。

师:你怎么知道是两个完全一样的三角形?

生:把两个三角形重合,就可以知道是两个完全一样的三角形。 师:你们用两个完全一样的三角形,拼成了长方形,怎么拼得这么快?

生:我们找到了两条相等的边,而且两个三角形的方向相反。

师:看来呀,要想很快地用两个完全一样的直角三角形拼成长方形,首先要找到对应相等的边,然后把两个三角形反方向对齐。(教师操作。)

师:好,老师把你们的直角三角形放大了,贴到黑板上。还有没有其他结果?

生:我们还用两个完全一样的锐角三角形拼成了平行四边形。 师:你们是怎么拼的?

生:把两个三角形重合,找到相等的边,再把两个三角形反方向对齐,就可以拼出平行四边形。

师:三角形有几条边?

生:三条边。

师:所以,用两个完全一样的三角形中任意两条对应相等的边都可以拼成一个平行四边形。

师:好,贴到黑板上。还有没有别的结果?

生:我们用两个完全一样的钝角三角形,拼成了一个平行四边形。 师:好,贴到黑板上。

生:我们用两个完全一样的等腰直角三角形,拼成了一个正方形。 师:好,也贴到黑板上。

3.第二次操作实践。

师:大家来看,你们已经把三角形转化成了平行四边形、长方形、正方形,那么,怎么推导出三角形的面积方法呢?下面我们进行第二次小组合作,根据你们本组转化的图形,找到它们之间的联系,推导出三角形面积的计算公式,还记得你们各自的角色吗?

生:记得。

师:记录员一定要记录详细。好,开始。

(学生实验,教师参与到小组中进行指导。)

师:同学们讨论得非常认真,找到三角形的面积计算方法了吗? 生:找到了。

师:哪个小组来说说你们是怎么找到的?

生:我们用两个完全一样的三角形拼成了平行四边形,平行四边形的面积是底乘以高,再除以2就可以求出一个三角形的面积。(板书:底×高÷2)

师:是不是求一个三角形的面积,我们一定要拼成平行四边形以后再算?

生:不用。我们发现三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,所以三角形的面积是底乘以高再除以2。(板书:三角形的面积=底×高÷2)

师:你们的发现太棒了!同学们,看看你们拼成的平行四边形与三角形之间是不是也存在着底和底相等、高和高相等这种关系?

生:是。

师:拼成的平行四边形与三角形不但面积有关系,它们的底和高也有关系,三角形的底等于拼成的平行四边形的底,这种相等的关系叫做等底,三角形的高等于拼成的平行四边形的高,这种相等的关系叫做等高,那么三角形的底乘以三角形的高求出的是什么?

生:底乘以高求出的是与三角形等底等高平行四边形的面积。 师:说得真好!为什么除以2呢?

生:因为是用两个完全一样的三角形拼成的平行四边形,所以求一个三角形的面积就要除以2。

师:对。拼出长方形的同学是怎么推导公式的呢?

生:长方形的面积是长乘以宽,除以2就是一个三角形的面积。(板书:长×宽÷2)我们发现长方形的长等于三角形的底,长方形的宽等于三角形的高,所以三角形的面积就等于底乘高除以2。(板书:三角形的面积=底×高÷2)

师:你说得真好!拼成正方形怎么推导公式呢?

生:正方形的面积是边长乘以边长,除以2就是三角形的面积。(板书:边长×边长÷2)因为正方形的两条边长分别是三角形的底和高,所以三角形的面积等于底乘高除以2。(板书:三角形的面积=底×高÷2)

师:你们推导得真好!这样,三角形的面积能通过它自己的底和高来求吗?怎么求?

生:(略)

师:用字母S表示三角形的面积,a表示三角形的底,h表示三角形的高,如何用字母表示三角形的面积公式呢?(板书:S=a×h÷2)

生:(略)

三、课堂小结。

师:面对“三角形的面积”这个问题,我们以转化的思想为指导,通过利用已有的“求平行四边形、长方形和正方形的面积”知识推导出三角形的面积公式。

师:现在,你们说说,要求三角形的面积,关键是找哪两个条件? 生:三角形的底和高。

四、巩固练习。

(电脑出示。)

1.指出下列三角形的底和高,并口算它的面积。

2.判断。

(1)三角形的面积是平行四边形的面积的一半。( )

(2)两个完全一样的三角形可以拼成一个平行四边形。( )

(3)一个三角形的底为4厘米,高为3厘米,那么面积为3×4=12平方厘米。( )

(4)两个三角形的高相等,它们的面积相等。( )

3.测量红领巾的面积。

板书设计:三角形的面积

底×高÷2

三角形的面积=底×高÷2

长×宽÷2

三角形的面积=底×高÷2

边长×边长÷2

三角形的面积=底×高÷2

篇二:《三角形的面积》教学设计

教学目标:

1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。

教学难点:理解三角形面积公式的推导过程。

教学准备:每小组各一个长方形、正方形和平行四边形的纸;每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,一条红领巾;多媒体课件。

教学过程:

一、动手操作,发现规律

1、师:同学们喜欢玩儿游戏吗?(喜欢)今天我们就来玩一个游戏,好吗?(好)。请各小组拿出为大家准备的长方形、正方形和平行四边形,听好了,既然是游戏当然就有游戏规则,请想一想,如何在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考、讨论有几种折法,再开始折,并用彩色笔画出折痕。看看哪一个小组完成得又好又快!

2、小组学生代表上台汇报操作结果。

3、师根据汇报有选择地在黑板上贴出以下四种折法:

4、让学生观察后提问。

师:这三个图形分别被折成了两个形状、大小完全一样的什么图形?

生:这三个图形分别折成了两个形状,大小完全一样的三角形。

师:如果我们知道长方形长为30厘米,宽为20厘米,它的面积是多少?被折成的每个三角形的面积是多少?你是怎样求出来的?

生1:长方形的面积是30×20=600(平方厘米)

每个三角形的面积是600÷2=300(平方厘米)

师:如果我们知道正方形边长为30厘米,它的面积是多少?每个三角形的面积又是多少呢?为什么?

生2:正方形的面积是30×30=900(平方厘米)

每个三角形的面积是900÷2=450(平方厘米)

师:如果我们知道平行四边形的底为40厘米,高为20厘米,它的面积是多少?每个三角形的面积呢?为什么?

生3:平行四边形的面积是40×20=800(平方厘米)

每个三角形的面积是800÷2=400(平方厘米)

【设计意图】:通过动手操作,既做到复习旧知,又让学生初步理解三角形的面积与平行四边形之间的联系,为新知的探索做好铺垫。

5、 引出课题。

师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。

【设计意图】:从不会计算面积的图形中揭示课题,激发学生的探究兴趣。

6、板书课题:三角形的面积

二、自主探索,得出公式

1、玩游戏,小组内交流问题。

师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:

(课件出示以下问题)

A、两个完全一样的三角形能拼出什么图形?

B、拼成图形的面积你会算吗?

C、拼成的图形与原来每一个三角形有什么联系?

(学生在小组里动手拼一拼,并相互交流以上问题)

【设计意图】:给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。

2、学生代表上台演示汇报(2名学生,1人汇报,1人演示)

生1边演示,生2边汇报:

我们用2个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以一个三角形的面积=底×高÷2。

师:哦!原来是这样!同学们,你们明白了吗?请把掌声送给刚才这两位小老师。

师:刚才这个小组是用两个完全一样的锐角三角形来拼组的。你们还有其他新的发现吗? (寻找用直角三角形拼组的小组代表汇报)

(学生汇报的过程略)

师:汇报得真好!还有吗?

(点名用钝角三角形拼组的小组代表汇报)

(学生汇报的过程略)

【设计意图】:让各组学生口头表达自己小组的推导过程,锻炼学生整理思维、理顺思路的能力和口头表达能力。

3、根据学生的汇报,老师小结。

(每一种拼组学生汇报后都贴在黑板上。在老师小结时,应故意把其中的一个三角形拿掉,并画虚线表示。)

师:看来不管是锐角三角形、直角三角形,还是钝角三角形,只要两个完全一样的三角形就能拼成一个平行四边形,其中一个三角形的面积是拼成的平行四边形面积的一半。

追问:是不是任意一个三角形面积是任意一个平行四边形面积的一半?

(师任意拿起一个三角形和不等底等高的平行四边形的纸板,让学生对比进行引导) 生:不是。三角形的底和高必须与平行四边形的底和高相等时才对。

同学们现在说的很有道理,我们再来回忆一下刚才大家拼图形的过程。

老师板书:

三角形的面积是与它等底等高的平行四边形面积的一半。(板书)

师:看来,我们通过玩一玩,拼一拼,知道了怎样求一个三角形的面积了。那谁来说一说三角形的面积的计算公式是什么?

生:三角形的面积=底×高÷2(老师板书)

师追问:同学们,老师有点不明白,为什么写这个公式时用三角形的底乘高呢?“底×高”表示什么意思?为什么要“÷2”?

生:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。

(学生加深对三角形面积计算公式的理解后,生齐读公式)

【设计意图】:通过小结追问,让学生更进一步对三角形的面积=底×高÷2的理解,为下一步解决实际问题做好充分的准备。

师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?

生:s=ah÷2(师板书)

4、介绍教材P85页的数学知识。

师:同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,2000多年以前,我们的祖先就已经发现了,请看屏幕。(多媒体出示P85页的数学知识)

师:同学们,我国古代数学家固然伟大。但是,老师觉得你们更了不起!他们年纪很大了才发现的,而咱们小小年纪不也找到三角形面积的计算方法了吗?来,把热烈的掌声送给咱们自己!(响起掌声)好,接下来我们是不是更有信心继续展示自我?(是)

【设计意图】:通过数学知识的介绍,渗透爱国主义思想教育,同时增强学生利用知识解决实际问题的信心。

三、回顾过程,总结方法

1、两个完全相等的三角形拼成一个平行四边形,三角形面积是这个平行四边形面积的一半,即:三角形面积=底×高÷2。

2、我们是把三角形转化成平行四边形来计算面积的,即利用旧知解决新问题。

四、学以致用,解决问题。

师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)

1、 计算生活中的三角形的面积

(1)计算红领巾的面积

师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件? 生:需要知道三角形的底和高。

(课件出示例2)

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

师:请同学们算一算。

(学生练习后讲评订正)

(2)计算三角形标志牌的面积

篇三:三角形面积的计算教学设计及反思

教学内容:人教版小学数学第九册第69—73页《三角形面积的计算》。

教学目标:

1、认知目标

经历三角形面积计算公式的探索过程,理解三角形的面积计算公式,掌握求三角形面积的计算方法。

2、能力目标

通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。

3、 情感目标

在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。

教学媒体:多媒体课件、实物展示台等。

教学准备:剪刀、方格纸、长方形、平行四边形、各种不同类型的三角形等 。

教学过程:

一、 创设情景,引入探索。

师:同学们想不想到王老师生活的城市和学校的绿化带去参观一下?好,请跟我来!(点击课件出现各种形状的花坛其中包括三角形的花坛,最后画面定格在学生们测量花坛的情形中)咦?这些同学遇到了什么问题?原来他们想知道这些花坛的面积,那我们能不能帮帮他?

生:能(学生踊跃回答,但在回答三角形的花坛面积该怎样求时出现了疑问)

师:同学们想不想知道这个三角形花坛的面积啊?(想)那就得知道应该怎样求三角形的面积呀?我们这一节课就一起来探究这个问题好吗?(教师板书课题:三角形面积的计算)

[教学一开始,教师给学生提供了学校校园场景,让学生从场景中发现问题、提出问题,引出长方形、平行四边形的面积公式及计算方法,并让学生说说平行四边形面积公式的推导过程。当学生说出三角形花坛要求出三角形的面积时,很自然地引入了课题,激起了学生探究新知的欲望。]

二、自主探索,合作交流。

师:上一节课我们通过自主探索已经找出了平行四边形面积的计算方法,大家可以从中得到一些启发,这一节课我相信只要你们继续发挥自己的聪明才智就一定可以自己找到三角形面积的计算公式。

1、谈话启思。

师:请大家拿出你们课前所寻找到的你们认为实验需要的素材,自行确 定研究方案,希望同学们发挥自己的想象,可以拼,可以折,还可以摆。小组里的同学可以互相合作、讨论,看哪一些小组能找到三角形面积的计算方法。讨论结束之后我们将开一个现场发布会还要颁发小组和个人的“杰出发现奖”!

[让学生在课前寻找需要实验的素材,课中自行确定其研究方案,真正实现了根据学 生的需求进行教学,充分发挥了学生的主观能动性]

2、操作探索。

(1)小组合作探索、操作。

(2)小组交流。(学生积极踊跃的动手动脑,教师融入其中并适当给以启发)

3、开始现场发布会,展示学生的拼摆情况。

师:好,大家刚才的讨论热烈而认真,我看到很多小组都已经找到了三 角形的面积计算方法那我们就来现场发布吧!哪个小组先来把你们的成果展示给大家?好,你们先来。(学生在实物展示台上进行展示)

生:我们小组是用数方格的方法找到三角形的面积。

师:那你们是如何数的呢?

生:方格纸上每一格代表一平方厘米,不满一格的按半格数,所以我们数 出这上面的三个三角形面积都是24平方厘米。

师:恩,可以,数方格也是一种方法,让我们来看一下电脑博士是怎么说 的?(点击课件,通过动画展示数方格的过程)数的很正确!哦?别的小组有不同意见?

生:我们认为这种方法太麻烦!如果三角形面积再大一点的话就不好使用 了。

师:这么说你们有更好的方法?好先请这一组的同学先上位,你们来展一 下你们的成果,怎么样?

生:好,我们拿的是两个完全一样的锐角三角形

师:你们怎么知道它们完全一样呢?

生:因为如果把它们叠在一起的话,会发现它们完全重合,然后我们将其 中的一个三角形进行旋转,会拼成一个平行四边形。

师:哦!你们真善于发现!那你们的结论是什么呢?

生:我们还发现这个拼成的平行四边形的底等于这个锐角三角形的底。高 等于这个三角形的高。因为每个锐角三角形的面积等于拼成的这个平行四边形面积的一半。平行四边形的面积=底×高,所以这个锐角三角形的面积=底×高÷2

师:哇,你们说的太好了!老师一定要拥抱一下你们!我们一起来看看电 脑博士是怎么说的?(课件演示整个重合→旋转→平移的过程,并说出推导过程)恩,和电脑博士说的一样,你们真不简单!老师要颁发给你们一个杰出发现奖!同学们为他们鼓掌祝贺吧!并把你们的成果贴在黑板上。其他小组也要来展示,好,你们小组来。

生:我们用的是两个完全一样的钝角三角形,也可以拼成一个平行四边形, 推导过程跟上一组一样,我们的结论是钝角三角形的面积=底×高÷2

师:好的,我们来看一下电脑里有没有这种方法?(课件演示)你们的方 法也很好。

生:我们小组是用两个完全一样的直角三角形也可以拼成一个平行四边 形,我们的结论是直角三角形的面积=底×高÷2

生:我们小组用的同样是直角三角形,但我们拼成的是一个长方形。这个 拼成的长方形的长等于三角形的底,长方形的宽等于三角形的高,所以直角三角形的面积=底×高÷2,并且我们还发现如果我们用两个完全一样的等腰直角三角形还可以拼成一个正方形,但结论也是一样的

生:我们小组是用一个平行四边形。沿着对角线将它分成两个完全一样 的三角形,这一个三角形的面积=底×高÷2

生:我们是用一个长方形沿着对角线将它分成两个完全一样的 直角三角 形,结论也是三角形的面积=底×高÷2

[点评:教师放手让学生去发现,并让学生充分发表自己的观点,各抒己见,学生们的 积极性已经完全被调动起来了。教师在课堂上,及时点拨、鼓励学生,学生的个性得到了充分的张扬,创造思维能力也得到了很好的培养。]

师:好,同学们你们真了不起!找到了这么多的方法,如果大家觉得还有

什么好办法,我们可以在下一节实践活动课继续讨论。让我们来一起看看黑板上大家的研究成果吧!我们发现两个完全一样的三角形可以拼成一个平行四边形,(将平行四边形的贴图贴在黑板上)而平行四边形也可以分成两个完全一样的三角形(将三角形的贴图贴在黑板上)这种方法在数学上叫做转化法

板书:平行四边形的面积=底×高 三角形的面积=底×高÷2 如果用字母S表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?(板书:S=ah÷2)

3、评价体验。

师:你们通过自己的努力找到了三角形面积的计算方法,老师也为你们 自豪!瞧,连智慧姐姐也来到了我们的课堂,(动画演示)她带来了一些问题想考考大家,你们愿不愿意接受这样的挑战?

生:愿意!

四、实践运用,拓展创新。

1、 先指出下面每个三角形的底和高,再分别算出每个三角形的面积。

2、 根据题中所给的条件,你能算出下面哪个三角形的面积?

3.先指出下面每个三角形的底和高,再分别算出它们的面积。

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: