《分数与除法的关系》教学案例与反思

文章 2019-07-10 22:27:40 1个回答   ()人看过

教学目标

1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

教学重难点

理解分数与除法的关系

教学准备

每人准备4张同样大小的圆片

教学过程

一、引入情境,揭示例题

口答题

1、把8块饼干平均分给4个小朋友,每人分得几块?

2、把4块饼干平均分给4个小朋友,每人分得几块?

3、把3块饼干平均分给4个小朋友,每人分得几块?

怎样列式?板书3÷4

引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

不满1块那该怎么表示呢?

生:小数或分数

二、实践操作探索研究

师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

学生动手操作

教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

师:接下来我们请同学汇报一下他们研究所得结果。

(生讲述这样分的理由)

教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

总结:把3块饼干平均分给4个小朋友,每人分得3/4块

板书:3÷4=3/4(块)

师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

学生口述理由。板书:3÷5

师:想想该怎么去分?把你的想法和同桌交流下。

指名让学生说说思考过程。

板书:3÷5=3/5(块)

师:如果分给7个小朋友呢?

学生口述3÷7=3/7(块)

三、归纳总结,围绕主题

师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

板书课题:分数与除法的关系

生相互交流。教师板书:被除数÷除数=

师:除法算式又可以写成什么形式?

生补充:被除数÷除数=被除数/除数

师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

生:a÷b=a/b

师:这里的a和b可以取任何数吗?为什么?

生:除数不能为0。

师:分数和除法之间的关系,你有什么好的方法记住它们吗?

生交流讨论并回答

师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

四、巩固练习,拓展延伸

师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

集体校对。

师引导:比较上下两行有什么不同?

在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

师:接下来请大家独立完成“试一试”两小题。

然后小组交流你是怎么想的?

师:把7分米改写成用米作单位,可以列怎样的除法算式?

生:7÷10=7/10(米)

师:第二个呢?

生:23÷60=23/60(时)

师:独立完成“练一练”的第二题

集体讲评校对。

师:完成“练习八”的第一题口答

师:完成“练习八”的第三题

学生在书本上完成,

教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

五、课堂作业

完成“练习八”的第二题

教后反思:

本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: