“方程的根与函数的零点”教学设计

文章 2019-07-10 19:48:01 1个回答   ()人看过

一、内容和内容解析

本节课是在学生学习了《基本初等函数(Ⅰ)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备.

从教材编写的顺序来看,《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.

从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想.

基于上述分析,确定本节的教学重点是:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.

二、目标和目标解析

1.通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系,

2.零点知识是陈述性知识,关键不在于学生提出这个概念。而是理解提出零点概念的作用,沟通函数与方程的关系。

3.通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辨证关系.掌握函数零点存在性的判断.

4.在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.

三、教学问题诊断分析

1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.

2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间[a,b]上连续不断,是函数f(x)在区间[a,b]上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.

3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.这样就在零点(或零点个数)的确定上给学生带来一定的困难.

基于上述分析,确定本节课的教学难点是:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.

四、教学支持条件分析

考虑到学生的知识水平和理解能力,教师可借助计算机工具和构建现实生活中的模型,从激励学生探究入手,讲练结合,直观演示能使教学更富趣味性和生动性.

通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.

五、教学过程设计

(一)引入课题

问题引入:求方程3x2+6 x-1=0的实数根。

变式:解方程3x5+6x-1=0的实数根. (一次、二次、三次、四次方程的解都可以通过系数的四则运算,乘方与开方等运算来表示,但高于四次的方程不能用公式求解。大家课后去阅读本节后的“阅读与思考”,还有如lnx+2x-6=0的实数根很难下手,我们寻求新的角度——函数来解决这个方程的问题。)

设计意图:从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究。通过简单的引导,让学生课后自己阅读相关内容,培养他的自学能力和更广泛的兴趣。开门见山的提出函数思想解决方程根的问题,点明本节课的目标。

(二)新知探究

1、零点的概念

问题1 求方程x2-2x-3=0的实数根,并画出函数y=x2-2x-3的图象;

方程x2-2x-3=0的实数根为-1、3。函数y=x2-2x-3的图象如图所示。

问题2 观察形式上函数y=x2-2x-3与相应方程x2-2x-3=0的联系。

函数y=0时的表达式就是方程x2-2x-3=0。

问题3 由于形式上的联系,则方程x2-2x-3=0的实数根在函数y=x2-2x-3的图象中如何体现?

y=0即为x轴,所以方程x2-2x-3=0的实数根就是y=x2-2x-3的图象与x轴的交点横坐标。

设计意图:以学生熟悉二次函数图象和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图象之间的关系。理解零点是连接函数与方程的结点。

初步提出零点的概念:-1、3既是方程x2-2x-3=0的根,又是函数y=x2-2x-3在y=0时x的值,也是函数图象与x轴交点的横坐标。-1、3在方程中称为实数根,在函数中称为零点。

问题4 函数y=x2-2x+1和函数y=x2-2x+3零点分别是什么?

函数y=x2-2x+1的零点是-1。函数y=x2-2x+3不存在零点。

设计意图:应用定义,加深对概念的理解。

提出零点的定义:对于函数,把使成立的实数叫做函数的零点.(zero point)

2、函数零点的判定:

研究方程的实数根也就是研究相应函数的零点,也就是研究函数的图象与x轴的交点情况。 (Ⅰ)

问题5 如果把函数比作一部电影,那么函数的零点就像是电影的一个瞬间,一个镜头。有时我们会忽略一些镜头,但是我们仍然能推测出被忽略的片断。现在我有两组镜头(如图),哪一组能说明他的行程一定曾渡过河?(Ⅱ)

第Ⅰ组能说明他的行程中一定曾渡过河,而第Ⅱ组中他的行程就不一定曾渡过河。

设计意图:从现实生活中的问题,让学生体会动与静的关系,系统与局部的关系。

问题6 将河流抽象成x轴,将前后的两个位置视为A、B两点。请问当A、B与x轴怎样的位置关系时,AB间的一段连续不断的函数图象与x轴一定会有交点?

A、B两点在x轴的两侧。

设计意图:将现实生活中的问题抽象成数学模型,进行合情推理,将原来学生只认为静态的函数图象,理解为一种动态的过程。

问题7 A、B与x轴的位置关系,如何用数学符号(式子)来表示?

A、B两点在x轴的两侧。可以用f(a)·f(b)<0来表示。

设计意图:由原来的图象语言转化为数学语言。培养学生的观察能力和提取有效信息的能力。体验语言转化的过程。

问题8 满足条件的函数图象与x轴的交点一定在(a,b)内吗?即函数的零点一定在(a,b)内吗?

一定在区间(a,b)上。若交点不在(a,b)上,则它不是函数图象。

设计意图:让学生体验从现实生活中抽象成数学模型时,需要一定修正。加强学生对函数动态的感受,对函数的定义有进一步的理解。

通过上述探究,让学生自己概括出零点存在性定理:

一般地,我们有:

如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.

(三)新知应用与深化

例题1 观察下表,分析函数在定义域内是否存在零点?

-2

-1

1

2

-109

-10

-1

8

107

分析:函数图象是连续不断的,又因为,所以在区间(0,1)上必存在零点。我们也可以通过计算机作图(如图)帮助了解零点大致的情况。

设计意图:初步应用零点的存在性定理来判断函数零点的存在性问题。并引导学生探索判断函数零点的方法,通过作出x,的对应值表,来寻找函数值异号的区间,还可以借助计算机来作函数的图象分析零点问题。而且对函数有一个零点形成直观认识.

例题2 求函数的零点个数.

分析:用计算器或计算机作出x,的对应值表和图象。

1

2

3

4

5

6

7

8

9

-4.0

-1.3

1.1

3.4

5.6

7.8

9.9

12.1

14.2

由表可知,f (2)<0,f>0,则,这说明函数在区间(2,3)内有零点。结合函数的单调性,进而说明零点是只有唯一一个.

设计意图:学生应用例题1方法来解决例题2的零点存在性问题,并结合函数的单调性,从图象的直观上去判断零点的个数问题。

练习:判断下列函数是否存在零点,指出零点所在的大致区间?

① f(x)=2xln(x-2)-3;

②f(x)= 2x+2x-6.

(四)总结归纳设计

通过引导让学生回顾零点概念、意义与求法,以及零点存在性判断,鼓励学生积极回答,然后老师再从数学思想方面进行总结.

(五)目标检测设计

必作题:

1.教材P92习题3.1(A组)第2题;

2.求下列函数的零点:

(1) (2);

(3) (4)

3.求下列函数的零点,图象顶点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零:

(1) (2).

4.已知.

(1)为何值时,函数的图象与轴有两个零点;

(2)如果函数至少有一个零点在原点右侧,求的值.

选做题:设函数.

(1)利用计算机探求和时函数的零点个数;

(2)当时,函数的零点是怎样分布的?

数学解题方法技巧:如何更快答题

编者按:小编为大家收集了“数学解题方法技巧:如何更快答题”,供大家参考,希望对大家有所帮助!

数学解题方法技巧:如何更快答题

数学的学习,学生需要费很大的心思。毕竟数学并不是一门只要会背或者会说或者会写就可以学好的学科,它灵活度比较高。通常学生在学习数学花的时间比较多,但又毫无效果是什么原因呢?是方法不对?还是思路不对?

一、学习数学的误区

误区一:课上听懂知识就掌握了

在数学学习过程中,常常出现这种现象,学生在课堂上听懂了,但课后解题特别是遇到新题型时便无所适从。这就说明上课听懂是一回事,而达到能应用知识解决问题是另一回事。

误区二:多做题目总能遇到考题

有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。

二、数学的题型分析技巧

首先有一条定律:高次将次,多元消元,常数分离,变元集中。围绕这句话能够拓展出许多方法:比如解不等式恒成立题中的“常数分离法”、“换元法”。还有一句很重要的话就是:解题其实就是转化,将所求与题设条件靠拢的过程,根据求证找到题设条件与之的关系,进而寻找证明方法。

其次便是题型与方法。方法分为数学思想与常用解题技巧,这个可以去书店里找找相关的书,应该很容易就能找到。题型则是分为解析几何、立体几何、三角函数等等,这些多做试卷就能掌握相关规律,每道题重要的是看它背后的方法,例如函数求和题,可以裂项相消,也可以倒序求和,题目是用来巩固已学的数学知识,当某种方法已经掌握透了之后,就能去找别的类型的题练习,直到掌握所有方法。

三、快速答题技巧

一、解题思路的理解和来源

同一道题,不同的学生从不同的角度去理解,由不同的看法最终汇聚成正确的解题过程,这是解题的必然。无论是推导、还是硬性套用、凭借经验做题,都是思路的一种。有的同学由开始思路不清渐渐转变为清楚,有的同学根本没有思路,这就形成了做题的上的差距。

二、如何在短期内训练解题能力

数学解题思想其实只要掌握一种即可,即必要性思维。什么是必要性思维?必要性思维就是通过所求结论或者某一限定条件寻求前提的思想。几乎所有数学命题都可以用这一思想进行破解。

纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。

三.寻找解题途径的基本方法——从求解(证)入手

四.完成解题过程的关键——数学式子变形

五、夯实基础----回归课本

1、揭示规律---- 掌握解题方法

例如:课本在讲绝对值和不等式时,根据a-b≤a+b推出a-b≤a-c+b-c,这里运用了插值法a-b=(a-c)-(b-c)≤a-c+b-c这一思维方法,我们要弄清之所以这样想,之所以得到这个解法的全部酝酿过程。

2、融会贯通---构建网络

以上就是为大家提供的“数学解题方法技巧:如何更快答题”希望能对考生产生帮助,更多资料请咨询中考频道。

高一新生学习数学该注意什么?

【编者按】数学是一个人的学习生涯中所占比重最大的学科,也是高考科目中最能够拉开分数层次的学科,因此学好数学,无论是对高考,还是对以后学习工作都起着重要作用。那么高一新生在学习上刚刚踏入新阶段,如何去除初中时养成的不适宜高中学习的习惯,又如何掌握正确的学习方法呢?我们应注意以下三点:

(1)注意和初中数学知识的衔接。这是一个十分困难的问题,初中数学与高中数学的差别非常大,从原本的实际思维转入抽象思维,需要一个大幅度转变。这就需要重新整理初中数学知识,形成良好的知识基础,在此基础上,再根据高中知识特点,较快的吸收新的知识,形成新的知识结构。

(2)认真理解,反复推敲思考高中各知识点的涵义,各种表示方法。容易混淆的知识,仔细辨识、区别,达到熟练掌握,逐步建立与高中数学结构相适应的理论本质与思考方法,切忌急于求成。

(3)通过学习,要努力培养自己观察,比较抽象,概括能力初步形成运用知识准确地表达数学问题和实际问题的意识和能力;培养科学的、严谨的学习态度,为树立辩证唯物主义科学的世界观认识世界打下基础。

我们应试时,时常发现厌试心理,有时会有些紧张,这是很正常的。但过分紧张也会导致考不好,所以平时应把练习当作考试,但考试时则平视为练习,心态好了,成绩自己就上去了。

如何减少解题失误,这是一个考高分的关键。失误少了,分数就会溅涨。这需要学生的仔细观察与认真阅读题目,抓住题目重点、题心,并围绕重点、题心考虑其他条件与答案。其次,考虑要周全,避免出现遗漏情况,各个方面都要考虑到,这需要平日思考事物的长期积累。

考试考得不好,这是常遇到的问题,心情沮丧是正常心理,但不能持久下去。要将答案听彻底,记下,并与自己的解题思路相比较,发现不同之处,或不要之处并记于心里,这样对于下次考试则很有好处。

高一数学知识点

高一数学必修1第一章知识点总结

一、集合有关概念

1. 集合的含义

2. 集合的中元素的三个特性:

(1) 元素的确定性,

(2) 元素的互异性,

(3) 元素的无序性,

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2) 集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

1) 列举法:{a,b,c……}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR x-3>2} ,{x x-3>2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) Venn图:

4、集合的分类:

(1) 有限集 含有有限个元素的集合

(2) 无限集 含有无限个元素的集合

(3) 空集 不含任何元素的集合 例:{xx2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={xx2-1=0} B={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。AA

②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 AB, BC ,那么 AC

④ 如果AB 同时 BA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型 交 集 并 集 补 集

定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={xx A,且x B}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={xx A,或x B}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作 ,即

CSA=

质 A A=A

A Φ=Φ

A B=B A

A B A

A B B

A A=A

A Φ=A

A B=B A

A B A

A B B

(CuA) (CuB)

= Cu (A B)

(CuA) (CuB)

= Cu(A B)

A (CuA)=U

A (CuA)= Φ.

例题:

重点中学学生学习方法宝典

在过程中,掌握科学的,是提高成绩的重要条件。以下我分别从、上课、作业、、、课外学习、实验课等七个方面,谈一下的常规问题。应当说明的是,我这里所谈的是各科学习的一般规律,不涉及具体学科。

一、预习。预习一般是指在讲课以前,自己先独立地阅读新课内容,做到初步理解,做好上课的准备。所以,预习就是自学。预习要做到下列四点:

1、通览教材,初步理解教材的基本内容和思路。

2、预习时如发现与新课相联系的旧掌握得不好,则查阅和补习旧,给学习新打好牢固的基础。

3、在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在时特别注意。

4、做好预习笔记。预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课着重解决的问题、所查阅的旧知识等。

二、上课。教学是教学过程中最基本的环节,不言而喻,上课也应是同学们学好功课、掌握知识、发展的决定性一环。上课要做到:

1、课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。

2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。

3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。

4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。

5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。不懂的问题课后再去钻研或向老师请教。

6、要努力当课堂的主人。要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。

7、要特别注意老师讲课的开头和结尾。老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课的目的要求和要讲述的中心问题,起着承上起下的作用。老师的课后总结,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。

8、要养成记笔记的好习惯。最好是一边听一边记,当听与记发生矛盾时,要以听为主,下课后再补上笔记。记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,高二,供课后复习时参考。

三、作业。作业是学习过程中一个重要环节。通过作业不仅可以及时巩固当天所学知识,加深对知识的理解,更重要的是把学过的知识加以运用,以形成技能技巧,从而发展自己的,培养自己的能力。作业必须做到:

1、先看书后作业,看书和作业相结合。只有先弄懂课本的基本原理和法则,才能顺利地完成作业,减少作业中的错误,也可以达到巩固知识的目的。

2、注意审题。要搞清题目中所给予的条件,明确题目的要求,应用所学的知识,找到解决问题的途径和方法。

3、态度要认真,推理要严谨,养成“言必有据”的习惯。准确运用所学过的定律、定理、公式、概念等。作业之后,认真检查验算,避免不应有的错误发生。

4、作业要独立完成。只有经过自己动脑思考动手操作,才能促进自己对知识的消化和理解,才能培养锻炼自己的能力;同时也能检验自己掌握的知识是否准确,从而克服学习上的薄弱环节,逐步形成扎实的基础。

5、认真更正错误。作业经老师批改后,要仔细看一遍,对于作业中出现的错误,要认真改正。要懂得,出错的地方,正是暴露自己的知识和能力弱点的地方。经过更正,就可以及时弥补自己知识上的缺陷。

6、作业要规范。解题时不要轻易落笔,要在深思熟虑后一次写成,切忌写了又改,改了又擦,使作业涂改过多。书写要工整,解题步骤既要简明、有条理,又要完整无缺。作业时,各科都有各自的格式,要按照各学科的作业规范去做。

7、作业要保存好,定期将作业分门别类进行整理,复习时,可随时拿来参考。

四、复习。复习的主要任务是达到对知识的深入理解和掌握,在理解和掌握的过程中提高运用知识的技能技巧,使知识融汇贯通。同时还要通过归纳、整理,使知识系统化,真正成为自己知识链条的一个有机组成部分。复习要做到:

1、当天的功课当天复习,并且要同时复习头一天学习和复习过的内容,使新旧知识联系起来。对老师讲授的主要内容,在全面复习的基础上,抓住重点和关键,特别是听课中存在的疑难问题更应彻底解决。重点内容要熟读牢记,对基本要领和定律等能准确阐述,并能真正理解它的意义;对基本公式应会自行推导,晓得它的来龙去脉;同时要搞清楚知识前后之间的联系,注意总结知识的规律性。

2、单元复习。在课程进行完一个单元以后,要把全单元的知识要点进行一次全面复习,重点领会各知识要点之间的联系,使知识系统化和结构化。有些需要的知识,要在理解的基础上熟练地。

3、期中复习。期试前,要把上半学期学过的内容进行系统复习。复习时,在全面复习的前提下,特别应着重弄清各单元知识之间的联系。

4、期末复习。期末考试前,要对本学期学过的内容进行系统复习。复习时力求达到“透彻理解、牢固掌握、灵活运用”的目的。

5、假期复习。每年的和,除完成各科作业外,要把以前所学过的内容进行全面复习,重点复习自己掌握得不太好的部分。这样可以避免边学边忘,造成总复习时负担过重的现象。

6、在达到上面要求的基础上,学有余力的同学,可在老师的指导下,适当阅读一些课外参考书或做一些习题,加深对有关知识的理解和记忆。

五、考试。考试是学习过程的重要环节。通过考试可以了解自己的学习状况,以便总结经验教训,改进学习方法,为以后的学习明确努力方向。考试时应做到:

1、要正确对待考试。考试是检查学习效果的一种方法,考得好,可以促进自己进一步努力学习,考得不好,也可以促使自己认真分析原因,找出存在的问题,以便今后更有针对性地学习。所以,考试并不可怕,绝不应当产生畏考,造成情绪紧张,影响水平的正常发挥。

2、做好考试前的准备。首先是对各科功课进行系统认真的复习,这是考出好成绩的基础。另外,考试前和考试期间要注意劳逸结合,保证充足的睡眠和休息,保持充沛的精力,这是取得优异成绩的必要条件。

3、答卷时应注意的主要问题是: ①认真审题。拿到后,对每一个题目要认真阅读,看清题目的要求,找出已知条件和要求的结论,然后再动手答题。②一时不会做的题目可以先放一放,等把会做的题目做完了,再去解决遗留问题。③仔细检查,更正错误。答完以后,如果还有时间,就要抓紧时间进行检查和验证。先检查容易的、省时间的、错误率高的题目,后检查难的、费时间的、错误率低的题目。④卷面要整洁,书写要工整,答题步骤要完整。

4、重视考后分析。拿到老师批阅的试卷后,不仅要看成绩,而且要对进行逐一分析。首先要把错题改正过来,把错处鲜明地标示出来,引起自己的注意,以便复习时查对。然后分析丢分的原因,并进行分类统计。看看因审题、运算、表达、原理、思路、马虎等因素各扣了多少分;经过分析统计,找出自己学习上存在的问题。对做对了的题目也要进行分析,检查自己对题目的表达是否严密,解题方法是否简便等。

5、各科试卷要分类保存,以便复习时参考。

6、杜绝各种作弊现象。

六、课外学习。课外学习是课内学习的补充和扩展,二者是相互联系、相互渗透的整体。在搞好课内学习的基础上,适当进行课外学习,可以开阔自己的知识领域,发展个人的、爱好和特长,同时对课内学习也会起到有效的促进作用。课外学习应注意:

1、可根据自己的学习情况,有目的地选择学习内容,原则是有利于巩固基础知识,弥补自己的学习弱点。

2、可以根据自己的特长和爱好,选择一些有关学科的课外读物学习。

3、课外阅读一定要从自己的实际出发,量力而行,宁可少而精,也不多而滥,切忌好高鹜远、贪多求全。

七、实验课。实验是理论联系实际的重要手段,实验的目的是加深对理论的理解和有效地扩大知识领域,培养观察能力、判断能力、形象和动手操作的技能技巧,培养严肃认真的科学态度。实验课要做到:

1、实验前做好预习,明确实验的目的要求、实验原理及实验方法、步骤等。

2、注意熟悉实验用仪器设备的名称、功能和操作方法。

3、实验要自己动手操作,仔细观察实验现象,认真测定数据,做好记录。同时要分析出现误差的原因。严格遵守操作规程,爱护仪器设备,注意安全。

4、实验完成后,要认真而实事求是地写好实验报告

高中数学学习方法:理解“充要条件”具体概念

编者按:小编为大家收集了“高中数学学习方法:理解“充要条件”具体概念”,供大家参考,希望对大家有所帮助!

“充要条件”是数学中极其重要的一个概念。

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

以上就是为大家提供的“高中数学学习方法:理解“充要条件”具体概念”希望能对考生产生帮助,更多资料请咨询中考频道。

高考数学临场应试技巧 选择题直接求解法

中总有那么一两道问题难度系数很低的,问题难,以拉开来不同考生的差距。遇到难题一时想不出来,可以考虑换一种,换一种思路,如果仍然没有头绪,不妨先放一放,记下题号,等后面的解答完了再回来看看,你可能会获得新的解题。最后如果仍然没有想出来的也不能放弃,是选择题就要猜测答案了,填空题也不能空着,猜测答案往上写,是大题,就要分步写,只要与问题有关,能写多少写多少。

遇到了难题,我该怎么办?

会做的题目要力求做对、做全、得,而更多的问题是对不能完整完成的题目如何分段得分。下面有两种常用方法。

一、面对一个疑难问题,一时间想不出方法时,可以将它划分为几个子问题,然后在解决会解决的部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步。如从最初的把文字语言译成符号语言,把条件和目标译成表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。而且可望在上述处理中,可能一时获得,因而获得解题方法。

二。有些问题好几问,每问都很难,比如前面的小问你解答不出,但后面的小问如果根基前面的结论你能够解答出来,这时候不妨先解答后面的,此时可以引用前面的结论,这样仍然可以得分。如果稍后想出了前面的解答方法,可以补上:“事实上,第一问可以如下证明”。

选择题有什么解题技巧吗?

1、直接求解法

从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择支对照来确定选择支。

2、筛选排除法

在几个选择支中,排除不符合要求的选择支,以确定符合要求的选择支。

3、特殊化方法

就是取满足条件的特例(包括取特殊值、特殊点、以特殊图形代替一般图形等),并将得出的结论与四个选项进行比较,若出现矛盾,则否定,可能会否定三个选项;若结论与某一选项相符,则肯定,可能会一次,这种方法可以弥补其它方法的不足。

顶一下 ()  踩一下 () 

 

本文标签:

[!--temp.ykpl--]


友情链接: